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Introduction

When Mendelian genetics was rediscovered at the beginning of the 20th
Century, it was widely believed to be incompatible with Darwin’s theory of
natural selection. The mathematical sciences, in the hands of pioneers such
as Fisher, Haldane and Wright, played a fundamental rôle in the reconcilia-
tion of the two theories, and the new field of theoretical population genetics
was born.

The intervening century has seen a remarkable interplay between popu-
lation genetics and the mathematical sciences. The fundamental importance
to population genetics of Fisher’s 1918 paper, The correlation between rela-
tives on the supposition of Mendelian inheritance, is matched by its under-
pinning rôle in statistics, as the origin of the analysis of variance; the Fisher-
KPP equation, introduced in papers by Fisher and Kolmogorov, Petrovskii
and Piscounov to model the spread of an advantageous gene through a pop-
ulation living in Euclidean space, provides us with the canonical example of
a semilinear heat equation that exhibits travelling wave solutions; Kimura’s
innovative use of diffusions to understand the interplay between natural
selection and the randomness due to reproduction in a finite population
(Wright’s genetic drift) was one of the earliest applications of the emerging
field of stochastic differential equations; Feller’s diffusion, which describes
the evolution of a rare mutant, appears in the celebrated Ray-Knight The-
orem, as the canonical continuous state branching process, and much more
besides; and Kingman’s coalescent, which describes how genes sampled from
an idealised population are related to one another, not only sits at the heart
of statistical genetics, but its elegant mathematical structure has been the
seed for the development of a huge literature on exchangeable coalescents.

In spite of this remarkable history, fundamental questions remain unre-
solved. The genetic composition of a population can be changed by natural
selection, mutation, mating, and other genetic, ecological and evolutionary
mechanisms. How do they interact with one another, and what was their
relative importance in shaping the patterns that we see today? And for a
mathematician, these questions continue to inspire the development of whole
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new classes of models, with rich mathematical structure, often revealing un-
expected connections with other areas.

In these lectures, we shall focus on the models which arise when we try
to capture the interplay between the forces of evolution (mutation, selection,
random genetic drift etc.) acting on a population and the spatial structure
of that population. Whereas the pioneers in the subject could only observe
genetic variation indirectly, through phenotype, modern geneticists can ob-
serve genetic variation directly. Typically, differences in DNA sequences
between individuals in a sample from the population are used to infer some-
thing about the genealogical relationships between those individuals. The
challenge is to provide consistent forwards in time models for the way in
which the frequencies of different genetic types evolve in the population,
and backwards in time models for the ways in which genes in individuals
sampled from the population are related to one another. In practice, there
are very significant mathematical and computational challenges associated
with coalescent models that have stimulated a great deal of statistical and
computational innovation. Meanwhile, forwards in time models of theoret-
ical population genetics provide an invaluable tool for understanding how
different forces of evolution will interact for different parameter regimes and
timescales.

Mathematical population genetics is a catalogue of examples of the power
of mathematical caricatures in explaining biological phenomena, and so the
first step is to distil our understanding of evolutionary forces into simple,
workable models. Even the simplest models often exhibit rich mathematical
structure, worthy of investigation in its own right, but from time to time we
shall try to convince ourselves that they are also capturing the essence of
the biology that they are trying to model.

Our focus is going to be on understanding why results should be true,
rather than the full details of what are often quite technical proofs. Thus
we shall primarily be trying to learn how to perform the calculations that
tell us whether there is an interesting result to be proved. The details of the
analysis can be found in the original papers.

The plan of the rest of these notes is as follows. We shall begin by de-
scribing some of the simplest imaginable models of inheritance: the Wright-
Fisher model and the Moran model. These two models form the basis of
our understanding of what is known as genetic drift. This is a convenient
setting in which to illustrate some desirable features of models in this area.
We then extend to our first spatial population model, the classical Kimura
stepping stone model, which can be applied to subdivided populations. This
allows us to perform some exact calculations. However, many populations
are not subdivided, and so we then turn to a model of Malécot and Wright
for populations distributed across spatial continua. They used their model
to derive an expression for the way in which the correlation between the ge-
netic types of two individuals sampled from the population decays with their
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spatial separation. However, there are inconsistencies in their assumptions,
consideration of which resulted in Felsenstein’s famous 1975 paper ‘A pain in
the torus’. We’ll explore the implications of the pain in the torus, focussing
particularly on the implications for models based on branching processes,
before turning to one possible resolution, the spatial Lambda-Fleming-Viot
model (SLFV). This model will be the main focus of the rest of the lectures.
In particular, we shall use it to explore the interactions between genetic
drift, natural selection, and spatial structure.
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Terminology

We shall use a minimal amount of biological language. The term locus will
be used to refer to a location on the genome. We shall be thinking of a
stretch of DNA, longer than a single base, but short enough that is passed
undivided from parent to offspring. We shall use the term gene essentially
interchangeably with locus, but this is laziness; in general a locus could
contain no genes or several genes.

A gene can accumulate mutations that alter the corresponding DNA
sequence (just a string of letters from the alphabet A, C, G, T), which can
therefore occur in different forms, that we shall call alleles.

An excellent introduction to the underlying biology is Barton et al. (2007).

1 Wright-Fisher and Moran models and the King-

man Coalescent

1.1 Pedigrees or Genealogies?

For populations such as our own, in which individuals have two parents, the
ancestry of an individual is determined by tracing parents, grandparents,
great grandparents, and so on. Since populations are finite, ultimately there
must be individuals that appear multiple times in this ‘pedigree’ and so we
end up with a rather complicated branching and coalescing structure.
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Figure 1: The diploid Wright-Fisher model. Time for the Wright-
Fisher model runs down the picture. The large circles represent individuals,
and the small circles represent the two copies of a particular gene carried by
each individual; one copy from each parent. For this small population, after
just five generations, three individuals are in the pedigree of everyone in
the population, but the rightmost of those individuals has not transmitted
any genetic material to the current generation. Moreover, no ancestor has
contributed genetic material to everyone in the present-day population.

To investigate this further, we consider an extremely simple model of
reproduction. We’re going to suppose that our population is hermaphrodite,
so that we don’t have to worry about distinguishing males and females.
The basic conclusion would not change if we were to drop this assumption.
‘Diploid’ refers to the fact that each individual carries two copies of each
chromosome.

Definition 1.1 (Diploid Wright-Fisher model). Consider a large diploid
(but for simplicity hermaphrodite) population of size N . Under the diploid
Wright-Fisher model, the population evolves in discrete generations. In each
generation, independently, each individual has two parents, chosen uniformly
at random from the previous generation.

This is illustrated in Figure 1. For this (rather small) population, after
five generations, three individuals in the ancestral population are included
in the pedigree of everyone in the current population.

Lemma 1.2. Under the diploid Wright-Fisher model, for sufficiently large
N , the probability that a randomly chosen individual from the population t
generations in the past is in the pedigree of a given individual in the current
population converges to about 0.8 as t→ ∞.
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Heuristic explanation
Let P (t) be the probability that an individual alive t generations in the

past does not belong to the pedigree of our chosen individual. We write
down an approximate recursion for P (t).

Note that for an individual t + 1 generations in the past to not be in
the pedigree of our chosen individual, none of that individual’s direct de-
scendants can be in the pedigree. And since, for large N , the random
number of descendants left by a single individual in the next generation is
Binom(2N, 1/N) ≈ Poiss(2), P (t + 1) ≈ exp(−2 + 2P (t)). We are making
two approximations here: first the Poisson approximation to the binomial
distribution, and second that the probability of sitting in the pedigree of
the selected individual is independent for each of the different descendants
in the first generation. We look for a fixed point of this recursion.

To solve the equation p = exp(−2 + 2p), we first rearrange to obtain
(−2p) exp(−2p) = −2 exp(−2). Now z =W (z) exp(W (z)) defines the Lam-
bert W function (or product log function). Although it is, in general, multi-
valued, for z ∈ (−1/e, 0) there are just two branches and choosing the one
with W (z) ≥ −1 gives a unique solution. This yields p = −1

2W (−2e−2)
which is close to 0.2, and so the probability that the individual is in the
pedigree is ≈ 1− p ≈ 0.8. ✷

However, being in the pedigree of an individual does not guarantee trans-
mission of genetic material to that individual. Indeed, our calculation above
suggests that we can expect 80% of individuals t generations in the past to
be in the pedigree of a particular individual, but that individual only has
two copies of the relevant gene, so can only inherit genetic material from at
most two of those ancestors.

Under Mendelian inheritance, the copy of a gene transmitted from par-
ent to offspring is equally likely to be either of the parental copies. For the
small population in Figure 1, in which the small circles represent genes, we
see that of the three individuals that are pedigree ancestors of everyone, one
has transmitted no genetic material to the current population, and none has
contributed genetic material to everyone in the present population. What
we are seeing is a difference between the timescales over which pedigree an-
cestry and genetic ancestry are determined. As we shall see shortly, for a
population evolving according to the Wright-Fisher model, genetic ances-
try is decided over timescales of the order of N generations, but pedigree
ancestry is determined much more quickly.

Evidently, under this simple model, individuals must start to occur mul-
tiple times in a given individual’s pedigree after log2N generations. In fact
much finer results are known. A careful justification and analysis, due to
Chang (1999), of the branching process approximation that lies behind our
explanation of Lemma 1.2, shows that, with probability tending to one as
N → ∞, if we go back ∼ log2N generations, then we can expect to see an
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individual in the population who is ancestral to every present-day individ-
ual; tracing back ∼ 1.77 log2N generations, all individuals in the ancestral
population are ancestral to either everyone or noone in the present day pop-
ulation.

Although in a large population, most individuals will have descendants
alive into the indefinite future, a particular gene is highly unlikely to be
transmitted.

1.2 The haploid Wright-Fisher model

The lesson learned so far is that the pedigree is not necessarily the right
structure to consider if we are interested in genetic ancestry. An alternative
is to model the genes themselves. Recall that in Figure 1, the small circles
represent individual genes. There are 2N of them in any generation, and
in our simple diploid Wright-Fisher model, the subdivision into diploid in-
dividuals is unimportant; we can think of each gene as selecting a parental
gene uniformly at random from the previous generation. (If we wish to
recover the diploid structure, then we allow the 2N genes in the offspring
population to fuse at random into N pairs.) This leads us to study the
haploid Wright-Fisher model. (‘Haploid’ means that each individual carries
one copy of each gene.)

Assumption: So that we don’t need to keep track of factors
of 2, we shall suppose that we are modelling N genes.

We have reduced our model to the simplest imaginable model of inheritance:

Definition 1.3 (The (haploid) Wright-Fisher model). Consider a large hap-
loid population of size N . Under the (haploid) Wright-Fisher model, the
population evolves in discrete generations. In each generation, each individ-
ual, independently, selects a parent uniformly at random from the previous
generation. The offspring inherits the genetic type of the parent.

Remark 1.4. Of course, offspring don’t choose their parents. There are
several ways of achieving the same distribution.

1. It is equivalent to (randomly) label parents 1, . . . , N and assign families
of sizes ν1, . . . , νN , where (ν1, . . . , νN ) has the multinomial distribution
with N trials and equal weights:

P[(ν1, . . . , νN ) = (k1, . . . , kN )] =
1

NN

(
N

k1, . . . , kN

)
1∑N

i=1
ki=N .

Indeed this is what lies behind the usual biological justfication for the
model. For many organisms, during reproduction, each individual pro-
duces a very large (effectively infinite) number of gametes, which are
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combined to form a pool from which the next generation is sampled. If
everyone is equally fit, each makes the same contribution to this pool,
and so each has equal probability of having one of their gametes sam-
pled. Later we shall use this type of reasoning to justify more complex
models that include, for example, natural selection, in which parents
of different types will be assigned different weights.

2. There is an interesting route to these family sizes that lies behind many
of the branching process approximations employed in population ge-
netics. Suppose that each individual in the parental population has
a Poiss(1) number of offspring, conditioned on the total number of
offspring across the population being N . Then, by Bayes’ rule,

P[(ν1, . . . , νN ) = (k1, . . . , kN )] =
N !

NNe−N

N∏

i=1

1

ki!
e−11∑N

i=1
ki=N

=
1

NN

N !

k1! · · · kN !
1∑N

i=1
ki=N .

If the population size is large, then the marginal probability that the
first n individuals, say, have family sizes k1, . . . kn is well-approximated
by independent Poisson probabilities. And iterating over generations,
the number of descendants of a given ancestor is approximately a
Galton-Watson branching process with Poiss(1) offspring distribution,
at least until the total number of descendants is non-negligible compared
to N .

So far we have ignored types, except to say that under this model off-
spring inherit the genetic type of their parent. Before investigating what
happens to frequencies of different genetic types, we take a small diversion.

1.3 A brief diversion: one dimensional diffusions

A diffusion {X(t)}t≥0 is a Markov process that is continuous in both space
and time and is characterised in terms of two quantities, usually called the
drift and diffusion coefficients, that describe the mean and variance of the
change in Xt over an infinitesimally small time period. Thus, if we write
∆hX(t) = X(t+h)−X(t) for the change inX over the time interval (t, t+h),
the drift coefficient is

a(t, x) = lim
h→0

1

h
E[∆hX(t)|X(t) = x], (1)

and the diffusion coefficient is

b(t, x) = lim
h→0

1

h
E[(∆hX(t))2|X(t) = x].
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Roughly speaking, for very small h,

X(t+ h) ≈ X(t) + ha(t,X(t)) +
√
h b(t,X(t))ξ(t)

for a standard normal random variable ξ(t) (with ξ(t′) independent of ξ(t)
if t 6= t′). We often write this as a stochastic differential equation,

dXt = a(t,Xt)dt+
√
b(t,Xt)dBt, (2)

where {Bt}t≥0 is Brownian motion.
Diffusion processes often arise as limits of discrete time and/or space

Markov processes that move through a sequence of frequent small jumps.
(The prototype is Brownian motion, which can be seen as a scaling limit of
simple random walk.) Suppose that we have a sequence of such processes
{X̃(h)(nh)}n∈N, indexed by h, and write ∆X̃(h)(t) = X̃(h)(t+ h)− X̃(h)(t).
Then if

a(t, x) = lim
h→0

1

h
E[∆hX̃

(h)(t)|X̃(h)(t) = x], (3)

and

b(t, x) = lim
h→0

1

h
E[(∆hX̃

(h)(t))2|X̃(h)(t) = x],

both exist, and

lim
h→0

1

h
E[(∆hX̃

(h)(t))4|X̃(h)(t) = x] = 0, (4)

then as h tends to zero, we can approximate X̃(h) by the diffusion process
with drift and diffusion coefficients a and b respectively. The fourth moment
condition in (4) can be relaxed, but is often rather easy to check in our
applications.

There are similar conditions to check for continuous time Markov chains.
In that setting, we have a sequence of transition rates:

d

dt
P[Xh

t ∈ A|Xh
0 = x]

∣∣∣
t=0

= Qh(x,A), for x ∈ supp(Xh), x /∈ A,

and we require that

∫
(y − x)Qh(x, dy) = ah(x) → a(x),

∫
(y − x)2Qh(x, dy) = bh(x) → b(x),

and, for each R > 0 lim
h↓0

sup
x∈supp(Xh),|x|≤R

Qh(x,B(x, ε)c) = 0. (5)

The last condition guarantees that there are no jumps in the limit.
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Often we combine the first two calculations and directly evaluate the
infinitesimal generator, d

dtE[f(X
h
t )]|t=0. The limiting generator will be

Lf(x) := d

dt
E[f(Xt)|X0 = x]|t=0 = a(x)f ′(x) +

1

2
b(x)f ′′(x). (6)

There are lots of convenient ways to characterise the distribution of the diffu-
sion. One which readily extends to more complex settings and is particularly
well suited to situations in which one wants to prove weak convergence re-
sults, is through a martingale problem. If the diffusion X has generator L
given by (6), then

f(Xt)− f(X0)−
∫ t

0
Lf(Xs)ds

is a martingale. Applying this to f(x) = x,

Mt := Xt −
∫ t

0
a(Xs)ds (7)

is a martingale.
Now take f(x) = x2, so that

X2
t −X2

0 −
∫ t

0
(2Xsa(Xs) + b(Xs)) ds (8)

is a martingale.
Combining (7) and (8),

M2
t −

∫ t

0
b(Xs)ds =

(
Xt −

∫ t

0
a(Xs)ds

)2

−
(
X2

t −
∫ t

0
2Xsa(Xs)ds

)
+ martingale

= −2Xt

∫ t

0
a(Xs)ds + 2

∫ t

0
a(Xs)

∫ t

s
a(Xu)duds

+2

∫ t

0
Xsa(Xs)ds + martingale

= −2

∫ t

0
a(Xs)

(
Xt −Xs −

∫ t

s
a(Xu)du

)
ds+ martingale. (9)

Now for r < t observe that, by the tower property,

E

[∫ t

r
a(Xs)

(
Xt −Xs −

∫ t

s
a(Xu)du

)
ds

∣∣∣∣Fr

]

= E

[∫ t

r
E

[
a(Xs)

(
Xt −Xs −

∫ t

s
a(Xu)du

)∣∣∣∣Fs

]
ds

∣∣∣∣Fr

]

= E

[∫ t

r
a(Xs)E

[(
Xt −Xs −

∫ t

s
a(Xu)du

)∣∣∣∣Fs

]
ds

∣∣∣∣Fr

]
= 0,

9



and note that

E

[∫ r

0
a(Xs)

(
Xt −Xs −

∫ t

s
a(Xu)du

)
ds

∣∣∣∣Fr

]

=

∫ r

0
a(Xs)

{
E

[
Xt −Xr −

∫ t

r
a(Xu)du

∣∣∣∣Fr

]
+Xr −Xs −

∫ r

s
a(Xu)du

}
ds

=

∫ r

0
a(Xs)

(
Xr −Xs −

∫ r

s
a(Xu)du

)
ds.

Thus, the integral in (9) is also a martingale, and we deduce that

M2
t −

∫ t

0
b(Xs)ds

is a martingale. In other words,

Xt −X0 −
∫ t

0
a(Xs)ds

is a martingale, with quadratic variation

〈M〉t =
∫ t

0
b(Xs)ds.

We shall use analogous representations of diffusions taking values in much
more complicated state spaces later in these notes.

For more details of the material in this subsection, we refer to Karlin &
Taylor (1981), Durrett (1996), or the lecture notes at
http://www.stats.ox.ac.uk/ etheridg/pdecdt.pdf

1.4 The Wright-Fisher diffusion

We now turn to adding types to our Wright-Fisher population model. Sup-
pose that there are just two types (alleles), P and Q, and write p(t) for the
proportion of P -alleles in generation t and ∆p(t) := p(t+ 1)− p(t).

Since offspring inherit the type of their parent, given p(t), Np(t + 1) is
distributed as Binom(N, p(t)), and so

E[∆p(t)] = 0, var
(
∆p(t)

)
=

1

N
p(t)

(
1− p(t)

)
. (10)

The zero expected change in allele frequency reflects neutrality, that the
variance is O(1/N) tells is that we can only expect to see substantial changes
in allele frequencies due to random fluctuations over timescales of the order
of N generations.
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Lemma 1.5. Measuring time in units of N generations, as N → ∞, the
proportion of P -alleles in the neutral Wright-Fisher model above evolves
approximately according to the Wright-Fisher diffusion:

dpt =
√
pt(1− pt)dWt,

where Wt is a standard Brownian motion.

Proof: Since E[(∆p)4] = O(1/N2), this follows from (10) and the results of
the previous section. ✷

Eventually the Wright-Fisher diffusion will be absorbed in either p = 0
(with probability 1− p(0))or p = 1 (with probability p(0)). This loss of di-
versity is due to Wright’s genetic drift (the randomness due to reproduction
in a finite population).

1.5 The Kingman coalescent

If we record only p(t) in the Wright-Fisher model, then we lose almost all
information about the way in which individuals in the population are related
to one another, whereas our description in Definition 1.3 was in terms of an
offspring ‘choosing’ parents and so, iterating, in terms of ancestry. From that
description, it is straightforward to describe the genealogical trees relating
individuals in a random sample from the population.

Consider first a sample of size two. The only information in the ge-
nealogical tree is the number of generations since their most recent common
ancestor (MRCA). The chance that they ‘chose’ the same parent in the pre-
vious generation is just 1/N . Since the dynamics are independent across
generations, in any generation, given that they have not yet found a com-
mon ancestor, the chance that they do so across that generation is 1/N . In
other words, the number of generations that we must trace back to reach a
common ancestor is Geom(1/N). This has mean N . Just as when we looked
at allele frequencies forwards in time, we see that it is natural to measure
time in units of N generations. In these units, the time to the MRCA is
1/NGeom(1/N) ≈ Exp(1).

For samples of size k ≥ 3, say, there is the possibility of ‘multiple merg-
ers’, by which we mean three or more lineages having a common parent.
But the chance of such an event in a single generation is O(1/N2) and so
in fact we’d expect to wait O(N2) generations before seeing one, and by
that time all lineages will have merged through the pairwise mergers (at
least for large N). Similarly, we don’t expect to see simultaneous mergers of
different pairs of lineages in the same generation, as such an event also has
probability O(1/N2).

Tracing back the ancestral lineages of a sample of size k, the first event
will be the first of the pairwise mergers between lineages, so it will happen at
the minimum of

(
k
2

)
almost independent Exp(1) times; that is at an Exp

(
k
2

)
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time. At that time, it is equally likely likely to be any of the
(
k
2

)
possible pairs

of lineages that merges. That leaves k−1 lineages and we wait an additional
Exp
(k−1

2

)
time until a uniformly chosen pair of the lineages merges, and so

on.
More formally, write [k] = {1, . . . , k}.

Definition 1.6 (Kingman coalescent, Kingman 1982). A k-coalescent is a
continuous time Markov chain on Ek, the space of equivalence relations on
[k], with transition rates qξ,η (ξ, η ∈ Ek) given by

qξ,η =

{
1 if η is obtained by coalescing two of the equivalence classes of ξ,
0 otherwise.

The Kingman coalescent on N is a process taking values in the space of
equivalence relations on N with the property that, for each k, its restriction
to [k] is a k-coalescent. By convention, we take the initial condition to be
the trivial partition into singletons.

Lemma 1.7. For a sample of fixed size k from a population evolving accord-
ing to the Wright-Fisher model of Definition 1.3, measuring time in units
of N generations, the genealogy of the sample can be approximated by a k-
coalescent in which each block of the partition at time t corresponds to an
ancestral lineage and, assigning lables 1, . . . , k to the individuals in the sam-
ple, the elements of a block are the labels of those individuals in the sample
that are descended from that ancestor.

Remark 1.8 (Consistency). If we take a (k+ l)-coalescent and restrict it to
[k], then we obtain a k-coalescent. This corresponds to sampling consistency
- if we take a sample of size k + l and restrict the genealogical tree to those
individuals in the sample labelled 1, . . . , k, we arrive at a genealogy with the
same distribution as if we had just taken a smaller sample in the first place.

Remark 1.9. The Kingman coalescent describes the genealogy of a random
sample from the population. We do not get to assign types to the sample.
If we condition on knowing the types in the sample, we no longer have a
Kingman coalescent. (In particular, since we have not yet allowed mutation
between types in our model, the ancestral lineage of an individual of type P
could never coalesce with that of an individual of type Q.)

The distribution of types in the sample, is determined by assigning types
to the ancestral lineages at some time t in the past, and then tracing their
descent through the genealogy to the present.

Large sample sizes

In Lemma 1.7, we assume that the sample size k is fixed and let N →
∞. We justify the Kingman approximation by saying that multliple and/or
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simultaneous mergers will not be seen on the timescale of the coalescent. In
the era of the 100,000 genomes project and other massive data sets, it is
instructive to see what happens to the error that we are making as sample
sizes grow. This is all made rigorous in Melfi & Viswanath (2017) (see
also Jono Chetwynd-Diggle’s thesis), but here we provide some heuristic
arguments.

The probability of seeing two pairs of lineages within a sample of size j
merge into separate parents in a single generation is

(
j

2

)(
j − 2

2

)
1

N

1

N − 1
≈ 3

(
j

4

)
1

N2
.

The probability of seeing a three-merger is
(j
3

)
1
N2 . The time until a single

pairwise merger if neither of these happens is ≈ N/
(
j
2

)
generations.

So the chance that we see a simultaneous merger (the more likely of our
prohibited events) before the single pairwise merger is

≈ N(j
2

)
(
j

2

)(
j − 2

2

)
1

N2
≈ j2

N
,

up to a combinatorial factor which is independent of j.
The chance that we see a simultaneous pairwise merger somewhere in

the genealogical tree of a sample of size k is found by summing j = 2, . . . , k
to obtain

k∑

j=1

j2

N
≈ k3

3N
.

In other words we expect the approximation to break down if the sample
size is O(N1/3).

Melfi & Viswanath (2017) show that we may see up to c pairs of lineages
merging as soon as the sample size exceeds O(N c/(2c+1)) and triple mergers
once k exceeds O(

√
N).

In theory this could be problematic; in practice, although these anomolies
may be present in the tree, our ability to detect them in data is restricted
by the resolution at which we can reconstruct the tree, which in turn is
controlled by the neutral mutation rate to which we now turn.

1.6 Adding mutation

In practice, reconstruction of genealogical trees from data is achieved by
looking for differences between the DNA sequences of individuals in the
sample. For our purposes we can think about point mutations which just
change one base (letter) in the DNA sequence. We are going to assume a
constant probability µ per individual per generation of a mutation at a given
locus.
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If we follow a single ancestral lineage, then we must wait a Geom(1/µ)
number of generations until we see a mutation. If µ is such that Nµ is
O(1), then mutation and coalescence will happen on the same timescale.
Moreover, the chance of seeing a mutation and a coalescence in a single
generation will be O(1/N2), so (much as in our arguments above) we can
treat mutation as falling on the branches of the coalescent tree as a Poisson
process of rate Nµ. It is customary to set θ = 2Nµ, so that the number
of mutations that fall on a branch of length L (in the Kingman coalescent
timescale) is Poiss(θL/2). The factor of 2 is a convention; it is chosen so
that if two individuals had a common ancestor at time T in the past, they
will differ by a Poiss(θT ) number of mutations.

If θ is not O(1), we won’t be able to ‘see’ a branch of length O(1) in
our data. Patterns in data reflect evolution over timescales dictated by the
neutral mutation rate.

1.7 The unreasonable effectiveness of the Kingman coales-

cent

Of course, no real population is going to evolve according to the Wright-
Fisher model. Indeed, it would seem to be truly remarkable to find a
laboratory population for which the Wright-Fisher model provided a rea-
sonable approximation to the genetic variation. However, to investigate
this, Buri (1956) followed just over a hundred populations of Drosophila
Melanogaster, each propagated from 8 males and 8 females. In his experi-
ment he maintained this population size in each generation through random
sampling. He recorded the variance in allele frequency across populations
for a gene that slightly alters eye colour (without affecting fitness).

Under the Wright-Fisher diffusion, dpt =
√
pt(1− pt)dWt,

d

dt
E[pt] = 0,

d

dt
E[p2t ] = E[pt(1− pt)],

d

dt
E[pt(1− pt)] = −E[pt(1− pt)].

Thus, the variance, Vt satisfies

Vt = p0(1− p0) (1− exp(−t)) . (11)

This is, of course, in units of N generations, so we should convert back
to time units of single generations in order to compare to data. After t
generations, the predicted variance is

p0(1− p0) (1− exp(−t/N)) .

In Figure 2, we see that if substitute N = 16, Buri’s data is a poor fit.
However, if instead we substitute an effective population size, Ne = 11.5,
the fit is quite good.
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Figure 2: The graph shows experimental results of Buri (1956) based on just
over 100 populations of Drosophila melanogaster, each propagated from 8
males and 8 females. Variance in allele frequency across the populations is
plotted against time (in generations). Circles are data points, the dotted line
is the theoretical prediction for N = 16, and the solid line is the theoretical
prediction with Ne = 11.5.

For Buri’s data, one can identify Ne = N/σ2, where σ2 is the variance of
the number of offspring of a single fly (forced to be 1− 1/N in the Wright-
Fisher model). What is more astonishing is that, at least if one samples
from far enough apart, by substituting an effective population size in place
of the census population size, the Kingman coalescent provides a surprisingly
good model for genealogies of samples from natural populations. To give an
idea of just how surprising this is, the effective population size of humans is
around 104 (Charlesworth 2009), as opposed to a census population size of
around 7 × 109. Somehow, Ne is capturing the effects of spatial structure,
natural selection, population growth etc. in a single parameter.

We’ll see the Kingman coalescent emerge from our models of spatially
distributed populations when we sample over suitable scales, but we’d like
models that allow us to investigate smaller scale spatial patterns of genetic
variation, and that will be a major focus of what follows.

1.8 The Moran model

The unreasonable effectiveness of the Kingman coalescent reflects the fact
that it can be used to approximate the genealogies of populations with quite
different local structures. Similarly, the Wright-Fisher diffusion, which we
identified as a scaling limit of the Wright-Fisher model, approximates allele
frequencies for populations with a wide variety of local structures/reproduction
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mechanisms (perhaps, as with the Kingman coalescent up to a change of
timescale, corresponding to replacing the census population size by an ef-
fective population size).

If we are really interested in the behaviour of our population over the
timescales of evolution, this suggests that we can choose a mathematically
convenient caricature (perhaps at the expense of some biological realism) and
expect the same asymptotic results. Before beginning our study of spatial
structure, we introduce one such caricature. Whereas in the Wright-Fisher
model, the population evolves in discrete non-overlapping generations, our
next model allows for overlapping generations.

Definition 1.10 (The neutral Moran model, Moran 1958). In the Moran
model for a neutral haploid population of size N , reproduction events occur
at the times of a Poisson process of rate

(N
2

)
. At the time of such an event,

a pair of genes is sampled uniformly at random from the population, one
dies and the other produces one offspring. The offspring inherits the type of
the parent.

In fact there is no accepted convention for the rate at which pairs of
individuals are chosen. This choice has the advantage that we are already
in the timescale of the Kingman coalescent. To see why, it is convenient to
look at the graphical representation of the Moran model.

The graphical representation

We suppose that individuals in our population at time zero are labelled by
1, . . . , N . Associated to each pair of labels (i, j) is a rate one Poisson process,
that we denote π(i,j). Since there are only finitely many labels, the points
of the π(i,j) are all distinct.

At a point of the Poisson process π(i,j), the individuals currently labelled
(i, j) are involved in a reproduction event in which one dies and the other
splits in two (reproduces). Offspring adopt the labels (i, j). In the graphical
representation, each label (individual) is represented by a line. A reproduc-
tion event is represented by an arrow. The individual at the tip dies and is
replaced by an offspring of the individual at the tail.

To trace back the ancestry of the population, we move backwards in time
through the graphical representation; when we hit the tip of an arrow we
follow that arrow; when we hit the tail of an arrow, our label corresponds to
the individual that was the parent of the event, so we just keep going. This
is illustrated in Figure 3.

The labels of indivduals change as we move backwards in time, but, for
example, suppose that we follow individuals with labels (i(t), j(t)). Because
of lack of memory of the exponential distribution, the instantaneous rate at
which an arrow falls between these two labels will always be one. And if we
are following k ancestral lineages, the instantaneous rate at which we see a
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Figure 3: Graphical representation of the Moran model. Forwards
in time, the individual at the tip of the arrow dies and is replaced by a copy
of the individual at the tail. Genealogies have been picked out in bold and
drawn separately on the right.

new merger is
(
k
2

)
. Because the π(i,j) are independent, it is equally likely

to be any pair of lineages that merge in this event. We have recovered the
Kingman coalescent.

The diffusion approximation

The calculation above tells us that we should be able to recover the Wright-
Fisher diffusion by assigning types P , Q, to individuals in our population,
writing p(t) for the proportion of type P at time t, and letting N → ∞ with
no scaling of time. We confirm this with a generator calculation.

Write LN for the infinitesimal generator of the continuous time Markov
chain p(t) when the population is size N . Recall that events fall at rate

(
N
2

)
.

When an event takes place, there will only be a change in p(t) if the pair
of individuals involved in the event are of different types (which happens
with probability 2p(t−)

(
1− p(t−)

)
), in which case it is equally likely that p

increases or decreases by 1/N . In other words,

LNf(p) =

(
N

2

)
p(1− p)

(
f(p+

1

N
)− f(p) + f(p− 1

N
)− f(p)

)

= p(1− p)

(
N

2

)(
f(p) +

1

N
f ′(p) +

1

2N2
f ′′(p)− f(p)

+f(p)− 1

N
f ′(p) +

1

2N2
f ′′(p)− f(p)

)
+O

( 1
N

)

=
1

2
p(1− p)f ′′(p) +O

( 1
N

)
.

In the limit as N → ∞ we recover the generator of the Wright-Fisher diffu-
sion, as expected. Of course, to check that the limit really is the diffusion,
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we need to check that there are no jumps in the limit as in (5), but that is
easy here as the chain only ever makes jumps of size 1/N .

Another small detour: the lookdown process

We have considered convergence of the forwards in time process of allele
frequencies, and of the backwards in time coalescents, as separate limits. If
we just look at allele frequencies, we lose sight of the genealogies completely.
If we only have information about the genealogical trees, then that gives us
information about how finite dimensional distributions of the process of
allele frequencies are related at different time points. The converse is not
true, and usually it is the forwards in time model of allele frequencies that
we specify in order to test hypotheses about evolution. Ideally, we’d like
a framework that investigates convergence of the allele frequencies and the
genealogies simultaneously. This is provided by the Donnelly and Kurtz
lookdown framework.

In this setting, typically, individuals are assigned (non-negative) integer
or real-valued ‘levels’, with connections between the levels determining the
genealogical trees. They are motivated by the graphical representation of
the Moran model, but with a very particular labelling of individuals. The
term ‘lookdown’ comes about because during reproduction events offspring
inserted at a given level typically ‘look down’ to individuals at lower levels
to determine their parent.

When the reproductive dynamics are unaffected by the spatial locations
or types of individuals in the population - as in the Wright-Fisher and Moran
models that we have considered so far - the levels can be taken to be non-
negative integer values, and that is the case that we shall briefly consider
here, but these restrictions can be dropped if instead levels take continuous
values in R+ (generally the points of a Poisson process). This idea has
been exploited extensively by Tom Kurtz and his coauthors. Etheridge &
Kurtz (2019) gives a set of ‘lego blocks’ for building very general classes of
population processes in such a framework. Here we confine ourselves to the
simplest example, discussed first in the original lookdown paper, Donnelly
& Kurtz (1996).

Consider a population of fixed size N . Individuals are assigned levels
1, . . . , N by choosing uniformly at random from all possible assignments. In
the same way as for the Moran model, we attach an independent Poisson
process π(i,j), of rate 1, to each pair (i, j) of levels. However, this time, at a
point of π(i,j), the individual with the higher of the two levels i and j dies
and is replaced by a copy of the individual with the lower level. In this sense
it ‘looks down’. Between replacement events, individuals (independently)
accumulate mutations. Since the levels play such an important rôle in the
dynamics, it is far from obvious that this gives rise to a sensible population
model. The key to seeing that it does, is to show that if {Xi(0)}1≤i≤N is
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exchangeable (has the same distribution if we permute the labels), then so
is {Xi(t)}1≤i≤N for each t > 0. We then check that the probability measure-
valued process

ZN (t) =
1

N

N∑

i=1

δXi(t)

has the same distribution as the corresponding probability measure-valued
process ẐN obtained from a ‘sensible’ population model.

Let us write E for the space of possible genetic types in our population
(corresponding to {P,Q} above). For a vector x = (x1, . . . xN ) ∈ EN , write
Φij(x) for the vector obtained from x by replacing xj by xi. Ignoring the
possibility of mutations, the generator of the process described above is

ANf(x) =
∑

1≤i<j≤N

(
f(Φij(x))− f(x)

)
.

In this notation, the Moran model, has generator

ÂNf(x) =
1

2

∑

1≤i 6=j≤N

(
f(Φij(x))− f(x)

)
.

For x ∈ EN , let zN = 1
N

∑N
i=1 δxi

be the corresponding empirical distribu-
tion. For f ∈ B(EN ) (bounded measurable functions on EN ), define

αf(zN ) =
1

N !

∑

σ

f(xσ(1), . . . , xσ(N)),

where the sum is over all permutations of {1, . . . , N}. In other words, we
average out over the assignment of levels. The key observation is that

αANf(zN ) = αÂNf(zN )

=
1

2

∑

1≤i≤N

(
αf
(
zN +

1

N
(δxi

− δxj
)
)
− αf(zN )

)
,

for any choice of x satisfying zN = 1
N

∑N
i=1 δxi

. In other words, the generator
of the Moran model and the lookdown process agree on symmetric functions.

From the point of view of the empirical distributions, provided we start
from an exchangeable initial condition, it doesn’t matter whether we con-
sider the lookdown model or the Moran model to be driving the dynamics.
The lookdown model is just the classical Moran model augmented with a
very particular labelling of individuals in the population.

A nice property of the lookdown construction for the Moran model is
that the model for a population of size N is embedded in that for one of
size M for any M > N . And it is clear that what happens to the bottom
n levels, corresponding (by exchangeability) to taking a random sample of
size n from the population, as M → ∞, since their dynamics are unaffected
by all levels greater than n.
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2 Adding space

2.1 Subdivided populations

Most of the models of spatially structured populations considered in the-
oretical population genetics take the same basic form: the population is
subdivided into demes (‘islands’) sitting at the vertices of a graph and in-
teraction between the corresponding subpopulations comes about through
migration of individuals along the edges of the graph.

The most elementary example is Wright’s island model (Wright 1943), in
which the graph is the complete graph. More generally, the graph is chosen
to caricature the actual spatial environment in which the population evolves
so that, for example, we might take the graph to be Z2 if we were modelling
a population that is distributed across R2.

We begin with a structured version of the Wright-Fisher model.

Definition 2.1 (Structured Wright-Fisher model). Suppose that a popula-
tion is subdivided into colonies situated at the vertices of a (possibly infinite)
discrete graph. We suppose that the vertices of the graph are indexed by
{i ∈ I} and we write i ∼ j if i and j are neighbours in the graph. Let Ni

(assumed constant) denote the number of individuals living in deme (colony)
i.

We say that the population evolves according to the structured Wright-
Fisher model if it evolves in discrete generations; in each generation, each
colony reproduces according to the neutral Wright-Fisher model, and then,
after reproduction, a proportion mij of the individuals in colony i migrate
to colony j.

In order to maintain constant population size in each colony we assume
that

Ni

∑

j∼i

mij =
∑

j∼i

Njmji.

Consider the genealogy of a sample from such a population. First con-
sider a single ancestral lineage currently in deme i. The chance that its
immediate ancestor in the previous generation was in deme j is mjiNj/Ni.

Now consider two lineages.

1. Suppose that they are both in deme i;

(a) the chance that they coalesce in deme j 6= i in the previous
generation is (mjiNj

2

)
(Ni

2

) 1

Nj
;
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(b) the chance that they coalesce in deme i in the previous generation
is (Ni−

∑
j∼i mjiNj

2

)
(Ni

2

) 1

Ni
.

2. Suppose that they are in demes i 6= j;

(a) the chance that they coalesce in k /∈ {i, j} in the previous gener-
ation is

mkiNk

Ni

mkjNk

Nj

1

Nk
;

(b) the chance that they coalesce in j is

mjiNj

Ni

Nj −
∑

l∼jmljNl

Nj

1

Nj
.

In order to obtain a Kingman like limit, we suppose that Ni is O(N) for
some large N , that Ni ≍ Nj for all i, j, and mij is O(1/N).

Two lineages will simultaneously undergo a migration and a coalescence
event with probability O(1/N2), whereas each migrates with probability∑

j∼imijNj/Ni which is O(1/N). When in the same deme, lineages coa-
lesce with probability 1/Ni which is O(1/N). Just as in our justification
of the (unstructured) Kingman coalescent, we don’t expect simultaneous or
multiple mergers of lineages.

Measuring time in units of N generations and letting N → ∞, in the
limit, the genealogy of a finite sample from the population will evolve ac-
cording to a structured coalescent. Lineages follow random walks (with rates
weighted by the ratios of population sizes in different demes) and can coa-
lesce when within the same deme. Just as in our simple Kingman coalescent,
to compare to data we need to revert to real (or at least effective) time units.
This leads to:

Definition 2.2 (Structured coalescent). We shall say that the genealogy of
a finite sample from a population distributed across demes labelled by i ∈ I
as above evolves according to a structured coalescent if writing ni(t) for the
number of lineages in deme i at time t before the present,

1. for each i ∈ I, ni 7→ ni − 1 at instantaneous rate 1
Ne(i)

(ni

2

)

2. for each i, j ∈ I with i 6= j,

{
ni 7→ ni − 1
nj 7→ nj + 1

at instantaneous rate

ni
Ne(j)
Ne(i)

mji

Notice that ancestral lineages are drawn into more populous demes.
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Remark 2.3. There are other modifications of the Kingman coalescent that
account for other biological mechanisms. An important early contribution to
this literature was Hudson (1990).

Just as for the simple Wright-Fisher model, we can also investigate what
happens to allele frequencies forwards in time, as the intensity of the popu-
lation in each deme tends to infinity.

Once again suppose that the population occurs in just two types P and
Q. Write pi(t) for the proportion of the population in deme i at time t that
is of type P .

Consider the increment in pi over a single generation. Writing ∆pi for the
increment in the proportion of type P in deme i across a single generation,
conditional on knowing the proportions {pi}i∈I in the parental population,

E[∆pi] =
1

Ni


(1−

∑

j∼i

mij

)
Nipi +

∑

j∼i

mjiNjpj


− pi

=
∑

j∼i

Nj

Ni
mji(pj − pi),

where we have used that Ni
∑

j∼imij =
∑

j∼iNjmji. Under our assump-
tions above this is O(1/N). After a short calculation

E[
(
∆pi

)2
] =

1

Ni

(
pi(1− pi) +O

( 1
N

))
,

and for i 6= j,

Cov
(
∆pi,∆pj

)
= O

( 1

N2

)
.

Letting N → ∞, under the assumption that mij is O(1/N), we obtain a
system of interacting Wright-Fisher diffusions, and so, as usual changing
back into ‘real’ or at least ‘effective’ time units, the proportions follow the
so-called stepping stone model, due to Kimura (1953):

Definition 2.4 (Kimura’s stepping stone model). We suppose that a popu-
lation that is distributed across a collection of demes indexed by some set I
is also subdivided into two allelic types labelled P and Q. The proportion of
P -alleles in deme i at time t is denoted by pi(t). Under Kimura’s stepping
stone model:

dpi =
∑

j

mji
Ne(j)

Ne(i)
(pj − pi)dt+

√
1

Ne(i)
pi(1− pi)dWi, (12)

where {Wi}i∈I are independent Brownian motions and we assume that

Ne(i)
∑

j∼i

mij =
∑

j∼i

Ne(j)mji

.
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In other words we have a system of interacting Wright-Fisher diffusions.

Remark 2.5. Kimura’s stepping stone model is a cornerstone of the the-
oretical population genetics of spatially structured populations. Part of its
power is that, just as for its non-spatial counterpart (the Wright-Fisher dif-
fusion), it approximates a wide variety of local structures. In particular, it
arises as a limit of Moran type models.

Example 2.6 (A structured Moran model). In the same way as above,
suppose that the population lives at the vertices of a discrete graph with Ni

individuals living at the vertex labelled i, for each i ∈ I.
At rate 1

Ni
each pair of individuals in deme i is involved in a reproduction

event in which one dies and the other splits in two (with equal probabilities).
In addition, there is exchange of individuals between demes. This can

be achieved in multiple ways. For example, at rate mij/2 an individual in
deme i chooses a random individual from deme j and exchanges places. As
in the non-spatial setting, there are plenty of choices of time units that could
have been made here. We have chosen ‘real’ time units.

In fact, if we are passing to a limit, supposing as above that Ni is
O(N) and that the rates mij are chosen in such a way that Ni

∑
j∼imij =∑

j∼iNjmji, we may assume that each individual in deme i migrates to deme
j at rate mij . Although the population size is not preserved for N <∞, the
law of large numbers will ensure that portions of migrants ‘balance out’ for
large N .

Adding types P and Q and assuming that individuals inherit the genetic
type of their parent, it is an easy exercise to check that the generator of
either of these two processes will converge to that of the Kimura stepping
stone model as deme occupancy tends to infinity.

It is common to suppose that the effective population size is the same in
each deme in the Kimura stepping stone model, in which case we may write

dpi =
∑

j∼i

mji(pj − pi)dt+

√
1

Ne
pi(1− pi)dWi, i ∈ I, (13)

and we assume
∑

j∼imij =
∑

i∼jmji for each i.

From now on it is this form of the stepping stone model that
we shall consider.

2.2 Duality

We have already given a justification for the claim that the genealogical
tree relating individuals in a sample from the stepping stone model is given
by a structured coalescent. In this section, we outline another connection
between the two processes via what is known as duality.
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The idea of duality is simple. We should like to express the distribution
of the process p in which we are actually interested (in our case the vector of
allele frequencies in different demes), in terms of another (hopefully simpler)
random variable, n, that may take values in a completely different state
space. This is achieved by finding a duality function f(p, n) for which, for
each t,

d

du
E
[
f
(
p(u), n(t− u)

)]
= 0, 0 ≤ u ≤ t, (14)

so that
E
[
f
(
p(t), n(0)

)]
= E

[
f
(
p(0), n(t)

)]
. (15)

If, as we vary n(0), f(·, n(0)) provides a wide enough class of functions, then
this is enough to characterise the distribution of p.

Existence of such a process n is often used to prove uniqueness (in dis-
tribution) of the original process p. (If there are two such p, then both must
satisfy (15), so their distribution at time t is characterised in terms of p(0)
and n and so is unique.)

Remark 2.7. In fact there are more general forms of duality in which (15)
is replaced by

E

[
f(p(t), n(0)) exp

( ∫ t

0
α(p(s)ds

)]
= E

[
f(p(0), n(t)) exp

( ∫ t

0
β(n(s)ds

)]
,

for suitable α and β. It is often possible to find putative f , α and β only to
discover that the expectations are not defined. A good reference is Ethier &
Kurtz (1986), Chapter 4, Section 4.

Finding a duality function f(·, ·) is usually a matter of trial and er-
ror; there is no systematic approach. An extensive survey is Jansen &
Kurt (2014). However, in genetics models, a good starting point is often to
look for a moment dual.

Moment duals provide expressions for the moments and mixed moments
of allele frequencies,

E

[
∏

i∈I

pni

i

]
,

where n = (ni)i∈I is a vector with non-negative integer entries, a finite
number of which are non-zero.

If pi is the proportion of the population in deme i that is of type P ,
this asks ‘What is the probability that a sample consisting of ni individuals
picked at random from deme i for each i is all of type P?’ In a model without
mutation, if we knew the genealogical trees, we’d trace back to time zero and,
since individuals inherit the types of their parents, the probability would be
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the same as the probability that all ancestors of the sample alive at time
zero were of type P . So if n(t) traced out genealogies, we’d certainly have

E[p(t)n(0)] = E[p(0)n(t)],

where we have used the notation

pn =
∏

i∈I

pni

i .

Remark 2.8. We emphasize that the converse is not true. There are ways
of constructing different genetic models in which the frequencies of the dif-
ferent types are the same, and so they have the same moment dual, but the
genealogies are different (Taylor, 2009). Nonetheless, moment duals can
still tell us interesting things about our model.

We illustrate an application of duality with our stepping stone model.
In our dual process we are going to think of ni as representing a number of
‘particles’ in deme i. The function f is defined by

f(p, n) = pn :=
∏

i∈I

pni

i ,

and our aim is to find dynamics for the process n(t) that guarantee that
equation (14) is satisfied. The first step is to calculate dpn with n held
fixed. We use ei to denote the vector (1k=i)k∈I , corresponding to a single
individual in deme i.

d
(
pn
)
=
∑

i

nip
n−ei

[∑

j

mij (pj − pi)
]
dt

+
∑

i

1

2Ne
ni (ni − 1) pn−2eipi (1− pi) dt+

∑

i

(. . .) dWi

Notice that, because we take the expectation in equation (14), we don’t care
about the exact form of the martingale term. Rearranging,

d
(
pn
)
=
∑

i

ni
∑

j

mij

(
pn+ej−ei − pn

)
dt

+
∑

i

1

2Ne
ni (ni − 1)

(
pn−ei − pn

)
dt+

∑

i

(. . .) dWi.

Now we must identify the dynamics for nt for which, if we are thinking
of holding p fixed and varying n, we obtain the same expression (bearing
in mind that in our duality formula, one process runs ‘backwards’ in time,
so the terms will then cancel). For the first term, particles should migrate
according to the time reversal of the random walk that governed the forwards
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in time evolution of the individuals in our biological population. To deal with
the second term we suppose that at rate 1

Ne
each pair of particles in deme

i coalesces to form a single particle. In other words, we have recovered the
structured coalescent.

Lemma 2.9. Suppose that p
t
evolves according to the Kimura stepping stone

model and that the process n, taking values in Z
I
+ (that is vectors indexed

by I with non-negative integer components), evolves as follows:

•
{
ni 7→ ni − 1
nj 7→ nj + 1

at rate nimji

• ni 7→ ni − 1 at rate 1
2Ne

ni (ni − 1).

Then we have the duality relationship

E

[
pn0

t

]
= E

[
pnt

0

]
.

This duality can already be used to make some qualitative statements
about the long term behaviour of the stepping stone model. We are primarily
interested in populations living in either one or two dimensional Euclidean
space (or subsets thereof). We use Z

1 and Z
2 to caricature these physical

spaces and ask what happens to the process of allele frequencies under the
stepping stone model in the case mij = κ1‖i−j‖=1.

First we calculate E [pi(t)pj(t)] as t → ∞. To do this, we start the dual
process from n(0) = ei + ej and see what happens as t → ∞. The distance
between the corresponding two particles follows a continuous time simple
random walk (at speed 2κ). In one or two dimensions, this separation will
reach zero in finite time. When this happens, there is some chance that
the particles will coalesce before moving apart again. If they don’t coalesce,
after another (independent) finite time, they will come back together and
once again they will have some chance of coalescence. And so on. In finite
time they will coalesce. There will then just be a single individual exploring
Z or Z

2. Under reasonable initial conditions, E [pi(t)pj(t)] → p as t → ∞
for some p that captures the initial prevelance of type P in the population.

The same argument applies to any finite initial condition n(0). That
is, provided that for a single random walker X(t) (evolving in Z or Z

2),
E[pX(t)(0)] → p as t→ ∞, we have

E

[
p(t)n(0)

]
→ p as t→ ∞.

The only way that all the moments and mixed moments of the process can
converge to the same value is if

p(t) →
{

1 with probability p
0 with probability 1− p

as t→ ∞,
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where 1 is the vector all of whose entries are 1, and 0 is the vector consisting
entirely of 0’s. So even though neither type has a selective advantage, even-
tually the population will consist entirely of P or Q alleles. Things would
be very different if natural populations lived in three dimensions or higher.

This result can be compared to our observation in the non-spatial set-
ting (below Lemma 1.5), that the neutral Wright-Fisher diffusion will be
absorbed at p = 0 with probability 1−p(0) and p = 1 with probability p(0).

2.3 Probability of identity in the stepping stone model

Our previous calculation was extremely crude and, in particular, ignored the
fact that populations are continuously accumulating new mutations. In a
population in which dispersal preferentially occurs between geographically
close subpopulations, like our stepping stone model on Z

2, the probabil-
ity that two individuals will have the same allelic state will decrease as
their separation increases, a phenomenon dubbed isolation by distance by
Wright (1943).

In this subsection we shall investigate the probability that two individ-
uals sampled at a given separation are ‘identical in state’.

Assumption. We shall suppose that each individual, in each
generation, has probability µ of mutating to a new type, never
before seen in the population.

(This is the so-called infinitely many alleles mutation model.) Under this
model two individuals are identical in state if, following their ancestral lin-
eages, neither has experienced a new mutation since their most recent com-
mon ancestor. Under other mutation models, in which the mutation does
not always lead to a novel type, the quantity that we calculate here would
be called the probability of identity by descent.

We follow Durrett (2008), Chapter 5, and assume a structured Wright-
Fisher model, in which there are N individuals in each deme, evolving in
discrete generations. (We consider demes with half the occupancy of those
considered by Durrett, and that is reflected in the constants below.) As
a first step, we work on Z, with individuals following nearest neighbour
random walk: mii = 1 −m, mi i+1 = mi i−1 = m/2. Write ψ(i, j) for the
probability that two individuals, one from colony i and one from colony j
are identical in state. (When i = j we suppose that two distinct individuals
are sampled.) Evidently ψ(i, j) will only depend on the difference j− i, and
so without loss of generality we may consider just φ(i) = ψ(i, 0).

Theorem 2.10 (Theorem 5.1, Durrett 2008). In the symmetric nearest
neighbour Wright-Fisher model on Z, the probability of identity for two lin-
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eages sampled at separation i is

φ(i) ≈ λ
|i|
2

1 + 2Nµ +mN(1− λ2)
, (16)

where

λ2 = 1 +
µ

m
−
√

2µ

m
+
µ2

m2
.

Proof.
We suppose that µ and m are small enough that we can ignore the prob-

ability that in a single generation two events affect the two individuals under
consideration. This is why (16) is only an approximation. Now consider one
generation. Under our assumptions,

φ(i) = mφ(i− 1) +mφ(i+ 1) + (1− 2m− 2µ)φ(i), for i 6= 0.

Rearranging,

φ(i+ 1)−
(
2 +

2µ

m

)
φ(i) + φ(i− 1) = 0, for i 6= 0.

Restricting to i ≥ 1, we have a second order difference equation whose
general solution is Aλi1 +Bλi2, where λ1 > λ2 are the roots of

λ2 −
(
2 +

2µ

m

)
λ+ 1 = 0; (17)

that is

λi =
(
1 +

µ

m

)
±
√

2µ

m
+
µ2

m2
.

Since λ1 > 1 > λ2, and we are looking for a probability, we must have A = 0.

Using the symmetry φ(i) = φ(−i), we have φ(i) = Bλ
|i|
2 . It remains to find

B, for which we need the analogue of our recursion for φ(0). Again ignoring
the possibility of two events affecting our lineages in a single generation,
and using now that φ(1) = φ(−1), since the probability of coalescence of
two lineages in the same colony in a single generation is 1/N + O(m2/N),
we approximate by

φ(0) = 2mφ(1) +
(
1− 2µ− 2m− 1

N

)
φ(0) +

1

N
.

Rearranging, this gives

(
2µ+ 2m+

1

N

)
φ(0) − 2mφ(1) =

1

N
,

and substituting in φ(i) = Bλ
|i|
2 we find

B

[
2µ + 2m+

1

N
− 2mλ2

]
=

1

N
.

28



That is

B =
1/N

2µ+ 2m(1 − λ2) + 1/N
.

✷

Remark 2.11. If the mutation probability is much smaller than the migra-
tion probability, µ≪ m, then λ2 ≈ 1−

√
2µ/m, and µ≪ √

2µm ≈ m(1−λ2),
so

φ(0) ≈ 1

1 + 2N
√
2µm

, φ(i) ≈ φ(0)
(
1−

√
2µ

m

)|i|
,

and we see an exponential decay of identity with separation.

Although some natural populations do live in essentially one dimensional
habitats (e.g. populations living in the intertidal zone along coastlines, or
adapted to live at a specific altitude), they do not have infinite range. In-
stead we often consider populations living on a torus (which is of course just
a ring of colonies in one dimension). Again following Durrett (2008), we
consider a ring of colonies with nearest neighbour random walk exactly as
before, except that now mL−1 0 = m0L−1 = m/2.

Theorem 2.12 (Theorem 5.2, Durrett 2008). With a ring of colonies, the
probability of identity for two lineages sampled from colonies that differ by i
(mod L) is

φ(i) ≈ C
(
λ
i−L/2
1 + λ

i−L/2
2

)
,

where λ1 > λ2 are

1 +
µ

m
±
√

2µ

m
+
µ2

m2

and

1

C
= (1 + 2Nµ)

(
λ
−L/2
1 + λ

−L/2
2

)
+ 2Nµ

[
(1− λ1)λ

−L/2
1 + (1− λ2)λ

−L/2
2

]
.

Proof.
Defining φ(L) = φ(0), for 0 < i < L we obtain exactly the same second

order difference equation as before (with the same roots). The solution of
interest to our recursion satisfies φ(i) = φ(L− i), so using that λ1λ2 = 1, it
is easy to see that the solution should take the form

φ(i) = C
(
λ
i−L/2
1 + λ

i−L/2
2

)
.

To compute C we use the same equation that determined B in the infinite
case: (

2µ+ 2m+
1

N

)
φ(0) − 2mφ(1) =

1

N
,

and substitute and rearrange to obtain the claimed result. ✷
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The time that it takes an ancestral lineage to travel a distance L is about
L2/m generations, so if L2/m ≪ 1/µ (the expected number of generations
before we see a mutation), the lineages will have forgotten their starting
point before we see a mutation and we can expect the genetic variation to
be essentially the same as for a homogeneously mixing population.

For L2/m≫ 1/µ, lineages are likely to see a mutation before they ‘notice’
that they are living on a finite ring of colonies, and the behaviour should
be much the same as on Z. Both these statements are easily checked from
Theorem 2.12, see Durrett (2008) for the details.

Two spatial dimensions: unbounded domain

The derivation above was very specific to nearest neighbour random walk
on a one-dimensional structure. Two spatial dimensions requires a different
approach. Here we follow Wright (1943).

We work with a structured Wright-Fisher model on Z
2, with N genes

in each deme. The population evolves in discrete generations. In each
generation, first offspring are generated by Wright-Fisher sampling within
each deme, then a proportion g1(x − y) of the offspring in deme x migrate
to deme y.

Rather than introduce a mutation mechanism, we think of the proba-
bility of identity of two individuals sampled at separation x as being the
generating function of the number of generations back to the MRCA of two
individuals sampled at separation x (now a two-dimensional vector). That
is, in an obvious notation,

φ(x) = Ex[(1 − 2µ)T ].

Let ψt(x) be the probabiity that two genes sampled at separation x had
their MRCA exactly t generations in the past. For t > 1, we decompose
this quantity according to the separation of the immediate ancestors of the
two genes. If they were migrants from the same deme, then with probability
1/N they have a common ancestor in the previous generation. Thus ψ1(x) =
G1(x)/N , where

G1(x) =

∫
g1(x, z)g1(0, z)dz,

is the convolution of two copies of g1 (corresponding to modelling the sepa-
ration of lineages). If, on the other hand, the two genes have distinct parents
at separation y, then the chance that their MRCA was t generations in the
past is ψt−1(y). For t > 1, we then have

ψt(x) =
∑

y

G1(x− y)ψt−1(y)−
1

N
G1(x)ψt−1(0).
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This can be rewritten as

ψt(x) =
1

N

(
Gt(x)−

t−1∑

τ=1

Gt−τ (x)ψτ (0)

)
, (18)

where Gt is the t-fold convolution of G1.
Writing T for the random time of the MRCA, the generating function

of T (which of course depends on the sampling distance x) is

φ(z, x) = Ex[z
T ],

and multiplying (18) by zt and summing over t yields

φ(z, x) =
1

N
G̃(z, x)

(
1− φ(z, 0)

)
, (19)

where G̃ denotes the Z-transform (discrete Laplace transform) of G,

G̃(z, x) =
∞∑

t=1

Gt(x)z
t.

Setting x = 0 in (19) gives an expression for φ(z, 0) and substituting this
back into (19) yields

φ(z, x) =
G̃(z, x)

N + G̃(z, 0)
.

This takes a particularly simple form if g1 is a discrete Gaussian kernel,
which we then approximate by a strictly Gaussian dispersal kernel. On an
infinite range this yields

1

N
Gt(x) =

1

2N t
exp

(
− |x|2

4σ2t

)
,

where N = 2Nπσ2 is Wright’s neighbourhood size, which measures the num-
ber of ‘potential parents’ of an individual.

With this continuous approximation for Gt,

1

N
G̃(z, 0) =

1

2N
∞∑

t=1

zt

t
=

1

N log

(
1√
1− z

)
,

and
1

N
G̃(z, x) =

1

N
∞∑

t=1

zt

2t
exp

(
− |x|2

4σ2t

)
.

Provided that |x|
√
1− z/σ is not too small, this latter quantity is approxi-

mately
1

N K0

( |x|
σ

√
1− z

)
,
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where K0 is the modified Bessel function of the second kind of degree zero.
However, as |x| ↓ 0, N G̃(z, x)/N → log(1/

√
1− z) whereasK0(|x|

√
1− z/σ)

diverges, so this approximation breaks down at small scales.
We now have the ingredients for the generating function of the coales-

cence times:

φ(z, 0) = E0[z
T ] =

1

1− 2N
log(1−z)

, (20)

and, at least for sufficiently large |x| and z sufficiently close to 1,

φ(z, x) = Ex[z
T ] =

G̃(z, x)

2N + G̃(z, 0)
≈

K0

(
|x|
σ

√
1− z

)

N − log(
√
1− z)

. (21)

The expression (21) cannot apply for very small |x| as it has the problem,
inherited from K0, of divergence at x = 0. The exact solution for these
very small sampling distances will depend upon the details of the dispersal
mechanism.

If we follow Barton et al. (2002) and assume that there is a local scale
κ over which the probability of identity (i.e. the generating function) is
approximately constant and equal to φ̃(z, 0), then using equation (20) to
rewrite equation (21) as

φ(z, x) =
1− φ̃(z, 0)

N K0

( |x|
σ

√
1− z

)
,

equating φ(z, κ) to φ̃(z, 0) and rearranging (using that K0(y) ≈ − log y as
y ↓ 0) we obtain

φ(z, x) ≈
K0

(
|x|
σ

√
1− z

)

N − log
(
κ
σ

√
1− z

) . (22)

It is more usual to set z = e−2µ (approximately 1− 2µ) then

φ(e−2µ, x) = Ex[e
−2µT ] ≈ K0(x/ℓµ)

N + log(ℓµ/κ)
, for |x| > κ, (23)

where ℓµ = σ/
√
2µ and

φ(e−2µ, 0) =
log(ℓµ/κ)

N + log(ℓµ/κ)
.

The expression (23) is called the Wright-Malécot formula. In particular,
we see that the probability of identity, over intermediate scales, will decay
approximately exponentially with sampling distance. If mutation rates are
small, then this will provide a good approximation for a wide variety of local
dispersal mechanisms - essentially we are approximating a random walk by
a Brownian motion. In Figure 4 we compare the predictions of the Wright-
Malécot formula to the actual decay in identity for the Kimura stepping
stone model for three different effective population sizes.
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Figure 4: Probability of identity in a stepping stone model on Z
2 for three

different values of Ne (2, 5 and 10, top to bottom). The mutation rate is
µ = 10−6 and migration is nearest neighbour with m = 0.05. The three
sets of dots are from simulations of the stepping stone model, taken from
Barton, Depaulis & Etheridge (2002). The curves are obtained from the
Wright-Malécot formula with local scale κ = 1/

√
32.

Two spatial dimensions: bounded domain

Just as for one dimension, we can expect that over bounded domains the
behaviour of the probability of identity will depend on the relative sizes
of the time to the first mutation and the times for ancestral lineages to
equilibriate over the domain. In particular, if N is big and µ is very small,
then identity may be insensitive to the sampling distance. As usual, since
results will be insensitive to local details, to investigate this we choose a
convenient model for our purposes.

We work on a torus of side L in Z
2. This time we take a structured Moran

model (largely so that the separation of ancestral lineages is a continuous
time random walk). We consider once again the time to the MRCA of a
sample of size two. This can be separated into two parts: the time T0 for
the lineages to first meet in a deme and the additional time t0 before they
coalesce starting from separation zero. (Note this is not consistent with
Durrett’s notation; he uses t0 to denote what in our notation corresponds
to T0 + t0.)

Let’s begin with T0. Suppose that we sample two random walkers from
random locations on the torus of side L in Z

2. The uniform distribution,
which we shall denote by π, is stationary for the walkers on the torus, so
since Pπ[Xt = 0] = 1/L2, we know that the expected time during which two
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randomly chosen lineages are in the same colony up until time L2 is

∫ L2

0
Pπ[Xt = 0]dt = 1.

If two lineages start at separation zero, then by a local central limit theorem,
P0[Xt = 0] ≈ 1/(4πσ2t) (the ‘4’ here because we are looking at the difference
between two lineages). Thus the expected amount of time that two lineages
chosen from colony zero are in the same colony up to time L2 is

∫ L2

0
P0[Xt = 0]dt ≈ log(L2)

4πσ2
.

We can now write

1 =

∫ L2

0
Pπ[Xt = 0]dt

=

∫ L2

0
Pπ[T0 = s]

∫ L2−s

0
P0[Xt = 0]dtds

≈ P[T0 ≤ L2]
log(L2)

4πσ2
.

The approximation in the last line is easy to see up to a constant, but in
fact this more precise approximation can be justified. We then have that

Pπ[T0 ≤ L2] ≈ 2πσ2

logL
.

We immediately see that we should expect T0 to be O(L2 logL). Cox &
Durrett (2002) show that the random walk on the torus equilibriates over a
time of o(L2 logL), so writing τ = T0/(L

2 logL),

P[τ > s+ t|τ > s] = P[τ > t] as L → ∞;

i.e. τ has the lack of memory property, and so must be exponentially dis-
tributed. Combining these ideas, they show that

Pπ

[
T0 >

L2 logL

2πσ2
t

]
→ e−t.

Of course, having come together, the lineages must still actually coalesce.
When two lineages are in the same colony, they coalesce at rate 1/N , so
E0[t0] ∝ NE[R0] where R0 is the return time to the same colony. But
since the stationary distribution is uniform, π0 ∝ 1/E[R0] gives E[R0] ∝ L2.
[This last result follows from a renewal theorem. For very large times t, the
number of visits to zero multiplied by the expected return time (defined to
be the gaps between steps into zero) tends to t. On the other hand if we
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normalise so that the jump rate is one, the number of visits by t will tend
to tπ(0). Thus the expected time between visits must be 1/π(0) = L2.] Up
to constants (which actually cancel), our argument gives E[t0] = NL2.

We then have two possibilities: either the time T0 to come together
dominates, or, if N/ log L→ ∞, then

P[(T0 + t0) > NL2t]− e−t → 0.

Typically we would not expect N to grow with L (as required for this second
scenario) and so the time to coalesce will be dominated by T0.

Zähle, Cox & Durrett (2005) prove a much more detailed result. They
show, in particular, that if one samples a finite number of individuals uni-
formly at random from the torus, then as L → ∞, measuring time in units
of order L2 logL, the genealogy of the sample converges to a Kingman coa-
lescent. So far we have argued that for a sample of size two, firstly the time
T0 until the lineages are first in the same deme is such that T0/(L

2 logL)
converges to an exponentially distributed random variable as L → ∞; sec-
ondly the additional time before the two lineages coalesce is asymptotically
negligible in the timescale L2 logL. The extension to larger samples uses the
fact (already reflected in the exponential distribution of T0/(L

2 logL)) that
the time L2 logL is long enough for a random walk to reach its mixing time
on the torus of side L in Z

2, and so at the time when a pair first come into a
common deme, the positions of the lineages ancestral to the sample are no
longer correlated with their starting point. This gives exchangeability: each
pair of lineages is equally likely to coalesce. Moreover, when a first pair of
lineages comes together, the others are still far apart and so we will not see
‘multiple mergers’ of lineages.

We shall see an analogue of this result in a slightly different context later
on.

3 Spatial continua: the pain in the torus

3.1 The Wright-Malécot model

Many biological populations are not subdivided into demes, but instead are
distributed across a spatial continuum. For such populations, it is far from
clear how best to approximate them through a stepping stone model: ‘How
should one choose the graph that supports the demes? What is Ne? What
are the migration rates between demes? What we would really like is to
be able to directly model a population that is distributed across a spatial
continuum.

Wright and Malécot almost solved this problem in the 1940’s. Their
starting point was that the population should be distributed across (one or
two-dimensional) Euclidean space as a Poisson random field, with intensity
a constant times Lebesgue measure.
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Reminder: In a Poisson random field of intensity λdx, the number of points
in a Borel set A is Poisson with mean λ|A| (where |A| denotes the Lebesgue
measure of A) and if A∩B = ∅, then the numbers of points in A and B are
independent.

In the Wright-Malécot model, the population evolves in discrete gen-
erations. In each generation, each individual, independently, dies and is
replaced by a Poiss(1) number of offspring (compare to a Wright-Fisher
model in which the number of offspring of an individual is Binom(N, 1/N)).
Offspring are distributed, independently, in a symmetric Gaussian distribu-
tion around the position of the parent.

In modern parlance, the population follows a branching random walk
with Poiss(1) offspring distribution. Wright and Malécot assumed that the
population would have the Poisson random field that they chose as initial
condition as a stationary distribution. Under that assumption, Malécot (1948)
wrote down recursions for the probability of identity of two individuals sam-
pled from the population, in exactly the same way as we did for the stepping
stone model, and given that we took a continuous approximation for the
transition densities of the random walk, it is no surprise that he arrived at
the same expression as an approximation for the probability of identity.

Perhaps not surprisingly, it was more than a quarter of a century before
the inconsistencies of the Wright-Malécot assumptions were laid bare. In one
and two dimensions, populations evolving according to the Wright-Malécot
dynamics form clumps of arbitrary density and extent before locally dying
out. This was first published in Felsenstein (1975), although he credits
Gillespie with bringing the clumping to his attention.1.

There is an easy way to understand this clumping in d = 1. Consider
the descendants of a single individual. The total number of descendants is
determined by a Galton-Watson branching process with a Poiss(1) offspring
distribution; that is, each individual, independently, leaves a Poiss(1) dis-
tributed number of descendants in the next generation. The probability that
it is still alive after t generations is ∝ 1/t. The mean number of descendants
is one, so conditional on being alive, the expected number of descendants
must grow like t. These descendants will be spread out around the position
of the original ancestor, but they will be no more spread out than as if they
had followed independent Gaussian random walks, in which case they are
spread over a region of diameter ∝

√
t, so we can expect the density to grow

like
√
t.

In two dimensions, this argument doesn’t quite work - we have to use
a second moment argument that ‘feels’ the dependence between the spatial
positions of indviduals in the branching process. We shall see shortly that

1In fact there is an error in Felsenstein’s paper: he concluded that this clumping also
took place in dimensions greater than two. In fact, in d ≥ 3 there is a nontrivial stationary
distribution. This was corrected by Sudbury (1977).
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in that setting we expect clumps with density that grows like log t.
One can try to overcome the clumping by working on a torus (a circle

in one dimension and a square with opposite sides identified in two dimen-
sions). To see what then happens, consider the simulation in Figure 5 (kindly
supplied by Jerome Kelleher). At time zero, one thousand individuals are
thrown down uniformly at random in the torus, resulting in the top left
frame. Starting from this initial condition, the population evolves accord-
ing to the Wright-Malécot model. For this realisation, the frames show the
state of the population after 10, 100 and 1000 generations. Since individ-
uals reproduce independently of one another, the total population size is a
critical Galton-Watson branching process, and so the population will even-
tually die out. One might hope that conditioning on the total population
size being constant, say, we’d arrive at a sensible model, but as we see from
our simulation, in which the population was very close to 1000 for the first
100 generations, this doesn’t overcome the problem of clumping. Felsenstein
dubbed the problem ‘the pain in the torus’.

The lesson that we learn from Felsenstein is that in order to overcome
clumping, we are going to need some sort of local population regulation.
Before writing down one possible resolution of the pain in the torus, we try
to understand the clumping a little better.

3.2 Branching process models

If we ignore space, then a natural starting point for modelling a biological
population is a Galton-Watson branching process in which each individ-
ual, independently, leaves behind a random number of offspring in the next
generation. However, to specify such a model we must specify the whole
offspring distribution - a countably infinite set of parameters. What we
should like is an approximation that is valid for a wide class of offspring
distributions, but which has only a small number of parameters. And as
we have seen that evolution acts over very long timescales (on the order of
population size in our Wright-Fisher models), we can expect a good model
to be one that captures the large time behaviour.

In the seminal paper Feller (1951), which initiated the cross-fertilisation
of ideas between population genetics and diffusion theory, Feller observed
that if one is observing a large population over sufficiently long timescales (a
number of generations on the order of the population size), then, in suitable
units, one can approximate the evolution of the population size by a one-
dimensional diffusion. This mirrors our use of the Wright-Fisher diffusion
to model frequencies of different genetic types and, indeed, Feller obtained
the Wright-Fisher diffusion in his paper.

To identify Feller’s diffusion, suppose that a population evolves according
to a Galton-Watson branching process with offspring generating function
ΦN (s) (where the parameter N will play the rôle of population size in our
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t = 0 t = 10

t = 100 t = 1000

Figure 5: The pain in the torus. Simulation, due to Jerome Kelleher, of
a population evolving according to the Wright-Malécot model on a torus.
In each generation, each individual (independently) produces Poiss(1) off-
spring, distributed (independently) in a Gaussian distribution around the
location of the parent. Although the population size in this example re-
mains fairly stable for timescales of hundreds of generations, the population
develops ‘clumps’. Top row, starting configuration of individuals and config-
uration after ten generations; bottom row, configuration after 100 and 1000
generations.
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Wright-Fisher diffusion). That is,

Zn+1 =

Zn∑

i=1

Yi, Yi are i.i.d, E
[
sYi
]
= ΦN (s).

Suppose that Φ′′
N (1) <∞ (so that the offspring distribution has finite vari-

ance).
If E[Yi] = Φ′

N (1) = 1 + aN , say, then

E[Zn] = (1 + aN )nZ0,

so that if we are going to measure time in units of N generations, in order
to obtain a nontrivial limit, we take aN = a/N . We also suppose that
Φ′′
N (1) converges as N → ∞ to a finite limit and that, for example Φ′′′

N (1) is
uniformly bounded.

Feller shows that as the unit N tends to infinity, provided that the se-

quence {Z0

N }N≥1 converges, then so does the sequence of processes {Z⌊Nt⌋

N }N≥1,
and he identifies the limit process, {X(t)}t≥0, which is often called the Feller
diffusion in his honour, as the solution to the one-dimensional stochastic dif-
ferential equation

dXt = aXtdt+
√
σXtdBt.

This is what we would now think of as standard Stroock-Varadhan theory
as outlined in Section 1.3 (although Feller’s work considerably predates that
theory). In the notation that we used there,

E[∆X] =
1

N
NX

(
1 +

a

N

)
−X =

1

N
aX;

and

var(∆X) =
1

N2
NXσ2N =

1

N
Xσ2N ,

where σ2N is the variance of the offspring distribution at the Nth stage of
the rescaling. Higher order moments of the increment are of order at most
1/N2 and so, since we are measuring time in units of N generations, the
result follows from Section 1.3.

Remark 3.1. 1. It is easy to check that we obtain the same limit if we
take a continuous time version of the branching process in which each
individual has an independent exponentially distributed lifetime. In
fact the same would be true for other lifetime distributions, but then
we must work harder as the prelimiting model is no longer Markov.

2. We saw when we wrote down the Wright-Fisher model that the number
of descendants of a single individual over a small number of genera-
tions could be approximated by a branching process. For a Wright-
Fisher diffusion, we often use a Feller diffusion to approximate the
frequency of a rare mutant as it becomes established in the population.
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Recall also that the multinomial distribution that sits behind the Wright-
Fisher model can be thought of as the result of conditioning N indepen-
dent Poisson random variables on their total mass. A nonrigorous calcula-
tion based on Itô’s formula reveals a similar connection between Feller and
Wright-Fisher diffusions. Let X, Y , be independent Feller diffusions and
write p = X/(X + Y ). We consider p conditional on X + Y = N .

First, by Itô’s formula,

dp =
dX

X + Y
− Xd(X + Y )

(X + Y )2
− d〈X,X + Y 〉

(X + Y )2
+

Xd〈Y 〉
(X + Y )3

=
Y dX −XdY

(X + Y )2
− Y d〈X〉 −Xd〈Y 〉

(X + Y )3

=
Y
√
σ2XdWX −X

√
σ2Y dW Y

(X + Y )2
,

where WX and W Y are independent Brownian motions (and the final term
has cancelled). Rewriting the martingale in terms of a single Brownian
motion W , we find

dp =

√
Y 2σ2X +X2σ2Y

(X + Y )4
dW

=

√
σ2

X

X + Y

Y

X + Y

1

X + Y
dW

=

√
σ2

X + Y
p(1− p)dW.

So conditioning on X + Y = N we expect

dp =

√
σ2

N
p(1− p)dW.

Of course, this is far from rigorous, but is indicative of the deep connection
between branching process models and models of population genetics.

The Wright-Malécot model that we saw in Section 3.1 is a natural ex-
tension of the Galton-Watson branching process to a spatial setting. Recall
that in that model, each individual, independently, produces a Poiss(1)
number of offspring (so the total population size is a branching process) and
those offspring are scattered about the location of the parent according to
a Gaussian distribution. Another way to think of this is that offspring are
born at the location of the parent, but follow independent Brownian motions
during ther lifetimes.

It turns out that just as we can approximate a Galton-Watson branch-
ing process (for a large population and over large timescales) by a Feller
diffusion, we can take the analogous scaling in this spatial context and ap-
proximate the behaviour of the population by a measure-valued diffusion.
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More precisely, we represent the individuals in the population by ‘atoms’
of mass, and the configuration as a whole as a purely atomic measure:

Nt∑

i=1

δξit .

Under the Feller rescaling, each individual will have mass 1/N , lifetime 1/N
(i.e. time is measured in units of N generations) and follow Brownian motion
through its lifetime (or equivalently let offspring follow a random walk as in
the Wright-Malécot model, but rescale space by

√
N). This leads to

XN
t =

1

N

N⌊Nt⌋∑

i=1

δξit .

Provided that XN
0 ⇒ X (weak convergence of measures), then XN

t ⇒ Xt

(weak convergence in the space of càdlàg paths in measure space) to a lim-
iting process known as the Dawson-Watanabe superprocess.

Definition 3.2 (Dawson-Watanabe superprocess). The Dawson-Watanabe
superprocess is the continuous measure-valued process (Xt)t≥0 taking values
in the space MF (R

d) (finite measures on R
d endowed with the weak topology)

for which, for all non-negative twice continuously differentiable functions φ,

〈φ,Xt〉 − 〈φ,X0〉 −
∫ t

0
〈D∆φ,Xs〉ds −

∫ t

0
〈aφ,Xs〉ds (24)

is a martingale with quadratic variation

∫ t

0
〈γφ2,Xs〉ds.

(The angle brackets here denote integration.)

Remark 3.3 (Infinite initial measures). For p > d, the Dawson-Watanabe
superprocess can be extended to take values in p-tempered measures on R

d,
denoted Mp(R

d). A measure µ is in Mp(R
d) if

∫
1

(1 + ‖x‖2)p/2µ(dx) <∞.

In particular, we can construct the Dawson-Watanabe superprocess started
from Lebesgue measure as initial condition, and it is often natural to do so.

Taking φ to be identically one, and writing Yt = 〈1,Xt〉 for the resulting
total population size process, we find that

Mt := Yt − Y0 −
∫ t

0
aYsds
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is a martingale with quadratic variation

〈Y 〉t =
∫ t

0
γYsds.

Comparing to Section 1.3 we see that Yt is a Feller diffusion.

Remark 3.4. Like the Feller diffusion, the Dawson-Watanabe superprocess
approximates a wide variety of local structures. The branching mechanism
needs to be ‘almost’ critical and have finite variance (and a little bit more,
e.g. finite 2 + ε moment to guaratee convergence), and the dispersion must
look like Brownian motion over large spatial and temporal scales, but we can
have discrete or overlapping generations, lifetimes don’t have to be exponen-
tially distributed, and so on. In spite of this permissible complexity, the limit
is parametrised by just three parameters - the growth rate a, the variance γ
and the diffusion constant D.

There is a huge literature on superprocesses - they have a rich and beau-
tiful mathematical structure. However, our immediate aim is simply to use
the Dawson-Watanabe superprocess to better understand the clumping that
we observed in the Wright-Malécot model, and so we simply refer to Daw-
son (1993), Le Gall (1996), Etheridge (2000) and Perkins (2002).

Let’s consider the Dawson-Watanabe superprocess with a = 0. First
observe that E[〈φ,Xt〉] solves the heat equation, so we can write E[〈φ,Xt〉] =
〈Ttφ,X0〉 where {Tt}t≥0 denotes the heat semigroup.

In Definition 3.2, we took test functions φ to be constant in time, but
it can be convenient to take functions which vary with time (in a determin-
istic way). Bearing in mind that the form of the martingale (24) is really
telling us how E[〈φ,Xt〉] varies with time, we can guess that if we substitute
〈φ(t, x),Xt(dx)〉, we should simply obtain an extra term 〈φ̇(t, x),Xt(dx)〉.
This is really just because of the product rule of differentiation. Since we
are assuming that φ changes deterministically with time, we do not expect
a contribution from covariation between φ and X. The analogue for a one-
dimensional diffusion would be that if bt is a deterministic differentiable
function, then

d(btYt) = btdYt + Ytdbt.

For φ ∈ C1,2(R+ ×R
d), say, and X the Dawson-Watanabe superprocess

〈φ(t, ·),Xt〉 − 〈φ(0, ·),X0〉 −
∫ t

0

〈(
φ̇(s,Xs) + ∆φ(s, ·)

)
,Xs

〉
ds (25)

is a martingale with quadratic variation

∫ t

0
γ〈φ2(s, ·),Xs〉ds.
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We are going to choose a very special form of φ. For a fixed time T , and
t < T , we take φ(t, x) = TT−tψ(x) for some compactly supported ψ (which
is independent of time), where Tt again denotes the heat semigroup, so that

∂

∂t
φ(t, x) = −∆φ(t, x).

For definiteness, let’s start our superprocess from Lebesgue measure at
time zero. Then substituting in (25) and taking expectations,

E[〈ψ,XT 〉] = 〈TTψ,X0〉 = 〈ψ,X0〉,

and the variance of 〈ψ,XT 〉 is

E

[∫ T

0
〈γ
(
TT−sψ

)2
,Xs〉ds

]
=

∫ T

0
γE
[
〈
(
Tt−sψ

)2
,Xs〉

]
ds

=

∫ T

0
〈γTs

((
TT−sψ

)2)
,X0〉ds

= 〈γ
∫ T

0

∫
γ (TT−sψ)

2 (x)dxds, (26)

where we have used that X0 is Lebesgue measure to integrate out Ts. This
expression diverges as T → ∞ in dimensions one and two. To see why, write
p(s, x, y) for the fundamental solution of the heat equation, then the last
line of (26) becomes

∫ T

0

∫ ∫ ∫
p(s, x, y)ψ(y)p(s, x, z)ψ(z)dydzdxds.

Now observe that

p(s, x, y)p(s, x, z) = p(2s, y, z)p

(
1

2
s, x,

y + z

2

)
,

so that (26) becomes

∫ T

0

∫ ∫ ∫
p(2s, y, z)p

(
1

2
s, x,

y + z

2

)
ψ(y)ψ(z)dydzdxds.

Now integrate out with respect to x to leave

∫ T

0

∫ ∫
p(2s, y, z)ψ(y)ψ(z)dydzds,

which grows like
√
T in d = 1 and like log T in d = 2.

Taking ψ to be 1B(0,1), we see that although the expected population
size in B(0, 1) remains constant, the variance grows without bound - so with
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high probability there is no mass in the ball, but if there is some, there is a
dense clump of population.

In fact, very detailed behaviour of the superprocess is known. In dimen-
sions at least three, starting from Lebesgue measure there is a nontrivial
stationary distribution. In dimensions one and two it suffers extinction, but
on the way to extinction it develops clumps. In one dimension, there is a
continuous density with respect to Lebesgue measure, but in two dimensions
(and higher) the support is singular with respect to Lebesgue measure. In
two dimensions, if x is a typical point of the support then there exists k,
independent of x and t, such that

lim
r↓0

E
(x)

[
〈1B(x,r),Xt〉
r2 log(1r )

]
= k. (27)

(The (x) on the expectation is to emphasize that we are conditioning on
x being a point of the support of Xt.) This result is due to Dawson &
Perkins (1991). A more detailed discussion of this and related results can
be found, for example, in Chapter 6 of Etheridge (2000).

3.3 Locally regulated populations

The lesson learned from the pain in the torus is that, in order to overcome the
clumping of our population in one and two spatial dimensions, we need some
local population regulation. In dimensions one and two, the population is
dying out locally, but en route to extinction it is developing very big clumps.
It seems natural to look for a model in which when the local population
is sparse, an individual can have a large number of offspring, so that the
population density grows; whereas if it is very dense, an individual can only
have a small number of offspring, and the local population shrinks. For
example, we could try to find a stochastic analogue of the heat equation
with logistic growth,

∂N

∂t
= ∆N + αN(M −N).

We saw for our Feller diffusion (and this feeds in to our superprocess) that
if the mean number of offspring of each individual is 1 + a/N at the Nth
stage of the rescaling, then in the limiting diffusion, the drift is aXtdt. This
suggests that to obtain a superprocess with local population regulation, we
should take a to depend on the local population density.

In Bolker & Pacala (1997), a model was introduced to the ecology liter-
ature that does just this. It is based on branching random walk, in which
there will only ever be a single individual at any given point, so, necessarily,
unlike the classical logistic growth equation, we cannot just measure crowd-
edness at a point, but instead we integrate against a test function centred
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on a potential parent to determine local crowdedness, and therefore their
mean number of offspring.

To gain some insight, we work not with the Bolker-Pacala model itself,
but instead with a supeprocess analogue. Since the superprocess is singular
with respect to Lebesgue measure, we once again measure local population
density by integrating against a suitable test function. Our ‘crowdedness’
test function will be denoted by h and we shall assume that it is radially
symmetric (it might for example be 1B(0,1)). If the maximum local popu-
lation size that can be supported by the environment is M , then we define
the growth rate at the point x at time s to be

a(s, x) = α
(
M − 〈h(‖x − y‖),Xs(dy)〉

)
.

One could replace this by any function of M − 〈h,Xs〉 but this is a natural
starting point. If the process is to exist when started from suitable infinite
initial measures (in particular Lebesgue measure), then one needs an inte-
grability condition on the function h to prevent an immediate catastrophe
for the population. We shall assume for simplicity that h(x, y) is a function
of ‖x − y‖ and abuse notation by writing h(r) = h(x, y) for ‖x − y‖ = r.
The required condition is

∫ ∞

0
h(r)rd−1dr <∞. (28)

Of course such models considerably predate Bolker & Pacala, they can be ob-
tained from the Dawson-Watanabe superprocess (and super-random walk)
by the Dawson-Girsanov transform, but they are difficult to study because
many of the powerful tools used in the study of superprocesses depend on
the branching property (which essentially says that if we subdivide the pop-
ulation, then each separate component will evolve independently), and this
is destroyed by the interactions introduced by the nonlinear growth rate.

Here we simply present a heuristic argument which explains conditions
under which we might hope for longterm survival in d = 2. We rescale ac-
cording to a scaling under which the Dawson-Watanabe superprocess start-
ing from Lebesgue measure is invariant.

Suppose then that d = 2. Define Xθ by

〈φ,Xθ
t 〉 =

〈
1

θ2
φ
(x
θ

)
,Xθ2t(dx)

〉
.

We write hθ(r) = θ2h(θr). Then

〈φ,Xθ
t 〉 − 〈φ,Xθ

0 〉 −
∫ t

0
〈D∆φ,Xθ

s 〉ds

−
∫ t

0

〈
θ2α

(
M − 〈hθ(‖x− y‖),Xθ

s (dy)〉
)
φ(x),Xθ

s (dx)
〉
ds
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is a martingale with quadratic variation

∫ t

0
〈γφ2,Xθ

s 〉ds.

Note then that if r2h(r) → ∞ as r → ∞, then hθ grows without bound as
θ → ∞, suggesting extinction.

In Etheridge (2004), the extinction result is (almost) verified. Moreover,
for a discrete space version of the model it is (essentially) shown that if
r2h(r) is bounded, then the process survives. Recalling (27), for a typical
point in the support of the superprocess

lim
r↓0

E
(x)

[〈χB(x,r),Xt〉
r2 log(1/r)

]
= k,

‘undoing’ the rescaling,

〈hθ(‖x− y‖),Xs(dy)〉 ∼ log θ.

If this were also true for the Bolker-Pacala model then we would expect
extinction. This suggests that survival in two dimensions reflects successful
eradication of clumping by the density dependent regulation term.

The proof of survival for the continuum version of the model has never
been written down in detail, but, roughly, Etheridge (2004) says that in order
for the process to survive, individuals must spread out from their parents
fast enough that they can colonise vacant regions before being killed by the
crowding caused by their own close relatives. Although this gives us hope
that we can find natural models, based on branching processes, which do not
have clumps and which have a nontrivial stationary distribution, we have
no tractable means of characterising the genealogical trees, and so no way
to compare to genetic data.

There has been very considerable effort to find alternative models of
locally regulated populations (we refer in particular to Birkner & Depper-
schmidt 2007), but analysis of such models has proved to be very difficult.

Scaling the stepping stone model

In some sense, the stepping stone model is the ultimate model of population
regulation - the population size is constrained to be constant in each deme
- and so another possible approach to finding a locally regulated model in
a spatial continuum involves scaling the stepping stone model according
to the diffusive rescaling. In one dimension, this can be achieved. By also
scaling the number of individuals in each deme, one can arrive at a stochastic
p.d.e. limit:

∂p

∂t
= D∆p+ sp(1− p) +

√
γp(1− p)Ẇ ,
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where W is space-time white noise. This was obtained by Shiga (1988).
Convergence of the first and second moments was proved by Nagylaki (1978a,
b).

This is most easily understood by considering the dual process of ances-
tral lineages. Under the diffusive scaling they converge to Brownian motions.
In d = 1, these motions will meet, and to obtain the stochastic p.d.e. limit
above, we arrange that they coalesce according to the local time that they
spend together. To see what the right scaling should be, suppose that we
scale time by N and space by

√
N . We need a lemma.

Lemma 3.5. Consider continuous time simple random walk on Z, started
from the origin. The number of excursions away from zero that the walk
makes before it reaches ±⌊

√
N⌋ is geometric with mean ⌊

√
N⌋.

Proof.
Consider a continuous time simple random walk Xt on Z, with initial

condition X0 ∈ [0, ⌊
√
N⌋] and stopped on exiting this interval. Note that

Xt is a martingale and so writing τ = inf{t > 0 : Xt ∈ {0, ⌊
√
N⌋}} (which

is a stopping time), by Doob’s optional stopping Theorem E[Xτ ] = X0. In
particular, taking X0 = 1, the probability that started from 1, X hits ⌊

√
N⌋

before it hits zero is E[Xτ ]/⌊
√
N⌋ = 1/⌊

√
N⌋. If every time the walk returns

to zero, we move it back to one, it will take of the order of
√
N attempts

before we hit ⌊
√
N⌋. ✷

This lemma tells us that if two lineages meet in a deme, but move apart
before coalescing, the chance that they move to a separation of order

√
N

before coming back to the same deme is order 1/
√
N . In other words it

takes order
√
N visits to the same deme before we see them move apart

to a distance which will be of order 1 in our scaled units. If we arrange
that the probability of coalescence at each visit is also order 1/

√
N , then

coalescence and separation to distance O(1) have comparable probabilities
and we can expect to see both in the limit. So in order to obtain the
stochastic p.d.e. limit, on top of the diffusive scaling, we scale the population
size in each deme by

√
N at the Nth stage of the rescaling.

In two dimensions, two Brownian motions will never meet and so we
will not be able to find a scaling in which coalescence persists in the limit.
Since coalescence reflects the genetic drift, that is the stochastic term in our
stochastic p.d.e., we see that a diffusive scaling will lead to the deterministic
heat equation.

An alternative approach to finding a continuum analogue of the stepping
stone model is to start with the backwards in time process of ancestral
lineages, and try to write down a continuum analogue. Several authors
have suggested taking systems of Brownian motions, with pairs of lineages
coalescing at a rate that depends on their separation - with the resultant
lineage typically being at the midpoint of the coalescing pair. The problem
with this (other than the lack of a corresponding forwards in time model) is
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Figure 6: Decay in correlation with separation for human mitochondrial
DNA along a northwestern European transect. Taken from Simoni et
al. (2000); see the original paper for a full explanation.

that this system of coalescing lineages lacks sampling consistency: suppose
we take a sample of n+m lineages and delete m at random - the resultant
tree is not the same as if we had just modelled n lineages directly; in the
full tree, whenever one of the n lineages (or its ancestor) encounters one of
the deleted lineages, it will jump - something that we would not see in the
ancestral tree constructed directly from the n lineages.

4 Overcoming the pain in the torus: the spatial

Lambda-Fleming-Viot model

4.1 Some features to incorporate

Although the Wright-Malécot model is inconsistent with the assumptions
that Wright and Malécot were making, their calculations lead to a formula
for the probability of identity that is completely consistent with what we
observed for the stepping stone model. This suggests that it should be
possible to write down a continuum model that is consistent with the Wright-
Malécot formula.

Ideally, we’d like this model to display some of the other features that
we observe in real data. For example, as we have already seen, genetic
diversity (for which effective population size can be seen as a proxy) is
often orders of magnitude lower than predicted by census population size
and a Wright-Fisher model. Moreover, the Wright-Malécot formula predicts
that the probability of identity in state decays approximately exponentially
with sampling distance for a two-dimensional population. However, what
often happens in real data is that, although the decay over intermediate
scales is indeed approximately exponential, the decay in correlations over
larger scales is slower than predicted by the Wright-Malécot formula, see
e.g. Figure 6.

One possible explanation for both of these observations is the large scale
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fluctuations experienced by real populations in which movement and repro-
ductive success of many individuals can be correlated. For example, climate
change has caused extreme extinction-recolonisation events that dominate
the demographic history of humans and other species (Eller et al. 2004). As
an example of the timescales involved, the last glacial maximum, in which
much of Northern Europe was covered in ice, was of the order of 20,000 years
ago. But the effective population size of humans is around 104 and with an
intergeneration time of, say, twenty years, that says that our genetic his-
tory was determined over much longer timescales, of the order of a hundred
thousand years. In the model that we are going to describe, one might think
of plants, living on a forest floor and being periodically eliminated by forest
fires, after which recolonisation is typically extremely rapid - and indeed can
be treated as instantaneous from the perspective of genetics.

Another factor that we may wish to incorporate into our models is that
for a population distributed across a spatial continuum, neighbourhood size,
which we recall measures the number of ‘potential parents’ of an individual,
may be small. The reason that we only ever saw pairwise mergers of ancestral
lineages in the Kingman coalescent was that the number of potential parents
of each individual was very large. So in a spatial continuum, if individuals
are sampled from close to one another, pairwise mergers may no longer
dominate.

4.2 An individual based model

We begin with an individual based model that was introduced in Berestycki,
Etheridge & Hutzenthaler (2009). We suppose that the population evolves
in R

d (’though this is far from necessary). We borrow ideas from the classical
models of earlier sections. The most biologically relevant case is d = 2.

For initial condition, we follow Wright and Malécot and take a Poisson
Point Process of constant intensity λdx on R

d (’though the initial condition is
rapidly forgotten in our model). The key to the model is that reproduction
will be based on events rather than on individuals. It will be this that
overcomes the pain in the torus.

The model is parametrised by a real number λ > 0 and a measure which
can be written as

ξ(dr, du) = µ(dr)νr(du) (29)

on (0,∞)×(0, 1]. Here µ is a (possibly infinite) measure on (0,∞) which will
determine, for each r, the rate at which ‘events of size r’ fall on any given
point. For each r, νr is a probability measure on (0, 1] which will determine
the ‘impact’ of an event on the local population. It tells us the expected
proportion of the population in the region covered by an event that will die
during the reproduction event.

To avoid trivialities we also assume that ξ ((0,∞) × (0, 1]) > 0. The
dynamics are driven by a Poisson point process, Π, on R+×R

d×R+× (0, 1]
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with intensity dt⊗ dx⊗ ξ(dr, du). In other words, the number of events in
[s, t]×A× [r,R]×B is Poisson with mean (t− s)|A|ξ([r,R] ×B).

Each point (t, x, r, u) of Π corresponds to an event which affects only indi-
viduals living within B(x, r), the closed ball of radius r and centre x ∈ R

d.
Frequent ‘small’ events model ordinary reproduction, whereas infrequent
‘large’ events mimic the effects of large-scale extinction/recolonisations. More
precisely, at a point (t, x, r, u) of Π, if B(x, r) is empty do nothing. Other-
wise:

1. choose a parent uniformly at random from those individuals present
in the ball;

2. each individual in B(x, r) (including the parent), independently, dies
with probability u;

3. throw down new individuals (with the same type as the parent) accord-
ing to an independent Poisson point process with intensity uλ1B(x,r)(y)dy.

This mechanism can be thought of as regulating the reproductive success of
individuals. If the ball B(x, r) is crowded, then each individual living there
has only a small chance of reproducing. On the other hand if the ball is
only sparsely populated, an individual living there has a significant chance
of producing a Poisson number of offspring with mean λuVol(B(x, r).

Véber & Wakolbinger (2015) have shown that this model exists for

∫ ∞

0

∫ 1

0
urdνr(du)µ(dr) <∞.

(The original paper assumed a stronger condition.)
If we were to allow ‘births’ (creation of population) in events when there

is no potential parent present in the ball, then the population would have
a Poisson point process with intensity λdx as stationary distribution. How-
ever, we do not. Nonetheless, because neighbourhoods overlap, an empty
region can subsequently become recolonised. The question is whether this is
enough to prevent the population from dying out. In Berestycki, Etheridge
& Hutzenthaler (2009), it is shown that there is a critical value of the param-
eter λ below which extinction is certain, but above which the population,
started from a Poisson random measure with constant intensity, survives
(indeed there is an ergodic stationary distribution). The proof is rather
straightforward. An easy coupling shows that the population is monotone
in λ. For small λ we can show that the population dies out by comparing to
a subcritical branching process. For large λ, we show survival by comparing
to oriented percolation. This is a bit fiddly because of the discrete structure
of percolation, and it turns out to be simpler to compare to edge percolation
than the more common site percolation.
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Ideally, we would now identify the distribution of the genealogy of a
sample from such a population. However, it turns out that this is compli-
cated. Because regions can, and do, become empty, knowing that there is
an individual in our sample at a point x ∈ R

d tells us something about the
Poisson process of events that have occurred. On the other hand, for suffi-
ciently large λ, one expects that the distribution of the sample tells us very
little about the Poisson Point Process of events. In that case, we expect the
genealogy to be well approximated by a system of branching and coalescing
random walks determined by the time reversal of Π. In this process, an
ancestral lineage can only move when it is covered by the region affected by
a reproduction event; it then jumps, with probability u, to the position of
the parent of the event (which will be uniformly distributed on the affected
region). Notice that if multiple lineages are in the affected region, then we
could see a ‘multiple merger’ coalescence event, by which we mean a merger
of three or more lineages.

Our approach will be to let λ → ∞ so that this description of the ge-
nealogical trees becomes exact. We can also then describe the correspond-
ing forwards in time model of allele frequencies. This will be the spatial
Lambda-Fleming-Viot process. Etheridge & Kurtz (2019) use a lookdown
construction to prove the joint convergence of the forwards and backwards in
time models (including for some more general models than those considered
here), but that is beyond our scope.

4.3 Lambda-coalescents and the Lambda-Fleming-Viot pro-

cess

To understand our description of the limiting spatial Lambda-Fleming-Viot
process (SLFV), it is perhaps easier to first consider the non-spatial setting.

Recall two features that we require of our models for ancestral lineages:
first we would like to allow for the possibility of small neighbourhood size,
so that we may see more than two lineages merging in a single event; we
call coalescents that allow for these events multiple merger coalescents. We
also require sampling consistency: if we take the coalescent for a sample of
size n+ k and delete k leaves at random, then we recover the coalescent for
a sample of size n.

In general, we might wish to allow for simultaneous mergers of lineages
- especially resulting from an extinction-recolonisation event - but here we
shall restrict ourselves to coalescents which don’t allow simultaneous merg-
ers. For us, this corresponds to only taking one parent in each repro-
duction event (and one founder in each extinction-recolonisation event).
Subject to this restriction, in the non-spatial context, the most general
form that a consistent coalescent can take is well-known - it is a so-called
Lambda-coalescent. These were introduced independently by Donnelly &
Kurtz (1999), Pitman (1999) and Sagitov (1999).
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Definition 4.1 (Lambda coalescent). If there are currently n ancestral lin-
eages, each transition involving a particular subset of j of them merging
happens at rate

βn,j =

∫ 1

0
uj(1− u)n−jΛ(du)

u2
, (30)

where Λ is a finite measure on [0, 1].

If we take Λ = δ0, then we recover the Kingman coalescent.
The form (30) becomes considerably less mysterious when one writes

down the corresponding forwards in time model for allele frequencies. We’re
going to suppose that there is no Kingman component, that is Λ({0}) = 0.
The forwards in time process, which appears from a lookdown construction
in Donnelly & Kurtz (1999), is dubbed the generalised Fleming-Viot process
by Bertoin & Le Gall (2003). We shall call it the Lambda-Fleming-Viot
process. When there is no Kingman component, it has a particularly simple
form.

We write K for the space of possible genetic types (assumed compact).

Definition 4.2 (Lambda-Fleming-Viot process (with no Kingman compo-
nent)). The Lambda-Fleming-Viot process takes values in M1(K), the space
of probability measures on K. We denote its state at time t by ρ(t, ·). Its dy-
namics are driven by a Poisson Point Process, Π, of events on [0,∞)×(0, 1],
with intensity dt⊗ u−2Λ(du).

If (t, u) ∈ Π, a reproduction event takes place at time t in which a portion
u of the population is replaced by offspring of an individual chosen uniformly
at random from the population immediately before the event. We call u the
impact of the event. Offspring inherit the type of the parent. That is for
(t, u) ∈ Π:

1. sample k ∼ ρ(t−, ·);
2. ρ(t, ·) = (1− u)ρ(t−, ·) + uδk.

This process is illustrated in Figure 7. The duality with the Lambda-
coalescent is now clear. For convenience, think of time as being extended
to the whole real line, so that the Poisson Point Process that drives events
is reversible. At a point (t, u) of the reversed process, all the ancestral
lineages in the portion of the population that are offspring of the event will
coalesce into a single parent - the others will be unaffected by the event. If
our lineages are a random sample, then each, independently, has probability
u of being among the offspring, so for a particular set of j lineages from
among n, the probability that exactly those lineages merge is uj(1− u)n−j,
and integrating against the rate of events, we find that the rate at which
exactly those j lineages merge is

∫ 1

0
uj(1− u)n−jΛ(du)

u2
.
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Figure 7: The Lambda-Fleming-Viot process. The upper graph depicts
the Poisson point process of events; the lower picture illustrates the effect
on the composition of the population of the event of impact u at time t.
The effect of the same event on five lineages ancestral to a random sample
from the population is superposed as bold lines.

4.4 The spatial Lambda-Fleming-Viot Process and its dual

The SLFV, introduced in Etheridge (2008) and rigorously constructed in
Barton, Etheridge and Véber (2010), is an obvious extension of the model
of the last section.

Definition 4.3 (Spatial Lambda-Fleming-Viot process (SLFV)). The spa-
tial Lambda-Fleming-Viot process (SLFV) {ρ(t, x, ·);x ∈ R

d, t ≥ 0}, specifies
a probability measure on the type space K for each x ∈ R

d at each time t ≥ 0.
Its dynamics are driven by a Poisson Point Process on R+×R

d×R+×(0, 1],
with intensity dt ⊗ dx ⊗ ξ(dr, du), where ξ(dr, du) = µ(dr)νr(du) with µ, ν
as in the individual based model of Section 4.2.

At a point (t, x, r, u) ∈ Π, a reproduction event takes place in the closed
ball B(x, r) with centre x and radius r. During the event:

1. select a location z for the parent uniformly from Br(x); that is z ∼
U(Br(x));

2. select a type k according to the distribution of types at z immediately
before the event; that is k ∼ ρ(t−, z, ·);

3. for all y ∈ B(x, r),

ρ(t, y, ·) = (1− u)ρ(t−, y, ·) + uδk.
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Sites outside B(x, r) are not affected, so

ρ(t, y, ·) = ρ(t−, y, ·), ∀y /∈ B(x, r).

Remark 4.4. Later on we shall be a bit more careful and specify the state
space of the SLFV carefully, at least in the special case when the type space
is P , Q, which we identify with K = {0, 1}.

Note that all offspring are of the type of an individual that we sampled
from z. In order for the process to exist, it is convenient to take the condition
that we wrote down for our individual based model:

∫ ∞

0

∫ 1

0
urdνr(du)µ(dr) <∞,

’though in fact this can be weakened somewhat (Etheridge & Kurtz 2019).
We can also write down the genealogical trees relating individuals in

a sample from the population - and in view of the duality between the
Lambda-Fleming-Viot process and the Lambda-coalescent, the form of the
dual should come as no surprise.

Once again, we think of time for the Poisson Point Process Π that dic-
tates the dynamics of the model as extended to the whole real line, so that
it is reversible. Tracing backwards in time, at each point (t, x, r, u) ∈ Π,
each ancestral lineage that is currently in B(x, r) will (independently) with
probability u jump to the position of the ‘parent of the event’, which is
uniformly distributed on B(x, r). Crucially, this is true even if there is only
a single lineage in the ball - it is this that maintains sampling consistency.

If we follow a single lineage, it evolves in a sequence of jumps with
intensity

dt⊗
(∫

[|x|/2,∞)

∫

(0,1]

Lr(x, 0)

Vd(r)
uνr(du)µ(dr)

)
dx

where Vd(r) is the volume of a ball of radius r in R
d and Lr(x, 0) =

vol
(
B(x, r) ∩B(0, r)

)
.

Two lineages currently at separation y will coalesce if they are both af-
fected by an event, which will happen at instantaneous rate

∫

[|y|/2,∞)
Lr(y, 0)

∫

(0,1]
u2νr(du)µ(dr).

Evidently, if this is bounded, so is the rate of all other coalescence events,
and since Lr(x, 0) is of order rd for large r, this is guaranteed under our
conditions.

The joint convergence of our individual based model to the SLFV and
the embedded genealogical trees to the process of coalescing random walks
described above is proved in Etheridge & Kurtz (2019).
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The moment duality between the stepping stone model and the struc-
tured coalescent will be mirrored in the SLFV setting. We defer a formal
statement until we have specialised to K = {P,Q}. First we examine the
behaviour of our coalescent when we sample uniformly at random from a
population living on a large torus. In particular, we are interested in investi-
gating the relationship between large scale extinction-recolonisation events
and the effective population size, in an effort to substantiate our claim that
such events could provide at least a partial explanation for lower than ex-
pected genetic diversity.

4.5 Large scale events and genetic diversity

At the end of Section 2.3 we described a result of Zähle, Cox, & Dur-
rett (2005) that says that if we sample a finite number of individuals uni-
formly at random from a population evolving according to the stepping
stone model on the torus of side L in Z

2, then measuring time in units of
L2 logL, the genealogy of the sample converges to the Kingman coalescent.
We emphasize that this timescale grows with the size of the range, and, in
particular, if the population density is held constant, the timescale grows
faster than the census population size, which will grow like L2. In order to
investigate the reduction in genetic diversity (or equivalently effective popu-
lation size) resulting from large scale extinction recolonisation events in the
SLFV, we mimic their setting and work with a large torus in R

2.
We write T(L) for the torus of side L in R

2. We shall consider two types
of event. Small events will affect uniformly bounded regions. The rate at
which we see small events of radius r will be governed by a σ-finite measure
µs(dr) on [0, Rs]. Large events will affect regions with a radius of O(Lα)
for some 0 ≤ α ≤ 1. The rate at which we see events of radius Lαr will be
determined by a σ-finite measure µB(dr) on [0, RB ].

More precisely, the dynamics of our population will be driven by two
Poisson point processes:

• small events are driven by Πs
L, a Poisson point process on R+×T(L)×

[0, Rs] × [0, 1] with intensity dt ⊗ dx ⊗ ξs(dr, du) where ξs(dr, du) =
µs(dr)ν

s
r (du);

• large events are driven by ΠB
L , a Poisson point process on R+ ×

L−α
T(L)× [0, RB ]× [0, 1] with intensity 1

ρL
dt⊗ dx⊗ ξB(dr, du) where

ξB(dr, du) = µB(dr)ν
B
r (du).

The reproduction mechanism is as before except that at a point (t, x, r, u)
of ΠB

L , a reproduction event takes place in the ball centred at Lαx and of
radius Lαr. The parameter ρL determines the relative frequency at which
an ancestral lineage will be covered by small and large events and therefore
their relative importance in shaping the genealogy of a sample.
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Since the sum of two Poisson processes is again a Poisson process, this
is of course just the same model as before - we have just chosen to consider
the events in two parts.

Remark 4.5. Note that the effect of large scale events is very different from
adding long range dispersal in the stepping stone model. Rather than a single
offspring being born at a large displacement from its parent, here, as a result
of a large scale event, offspring of a single parent replace a proportion of
the population at every point within a large ball. We can approximate the
stepping stone model with long range dispersal within this framework, but to
do so we must scale in such a way that the impact of large events is small.

The results that follow are from Amandine Véber’s thesis and were pub-
lished in Barton, Etheridge & Véber (2010). We’re not going to give any
details of the proofs, but instead we’ll try to explain why the results should
be true. The results in the paper come hand in hand with exact constants
that we don’t make explicit here.

Without the large events, the model is very much like the stepping stone
model and so it should come as no surprise that on timescales of O(L2 logL)
the genealogy of a uniform sample from T(L) should converge to the King-
man coalescent.

Our first result says that for any α < 1 the genealogy of a uniform sample
will still be close to a Kingman coalescent, but for α > 0 the timescale can
depend on both big and small events. To understand that timescale, let us
consider just two lineages. As for the stepping stone model, the time to
coalescence can be divided into two phases. If ρL is not too big, that is large
events are sufficiently frequent, then the first phase is the time that it takes
for the two lineages to come within distance 2RBL

α of one another, so that
there is some chance that they will be hit by the same event. The second
phase is the additional time to coalescence which, if ρL is not too big, will be
triggered by a large event. If, on the other hand, ρL is big, then large events
are too infrequent to alter the genealogy and the coalescence will be caused
by a small event. The first phase is then the time to come within distance
2Rss and the second is the additional time to coalescence. The transition
between the two regimes is, as one expects from the results for the stepping
stone model, when ρL ∝ L2 logL.

To state a more precise result, let σ2s (resp. σ2BL
2α/ρL) denote the vari-

ance in the displacement of a single ancestral lineage in one time unit due to
small (resp. large) events. (Note that the rate at which a lineage is affected
by big events scales with 1/ρL and the variance of each resulting jump scales
with L2α.)

Theorem 4.6 (Special case of Theorem 3.3 of Barton, Etheridge & Véber
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2010). Define

ωL =





(1−α)ρLL
2 logL

2πσ2

B
L2α if L2α

ρL
→ ∞,

(1−α)L2 logL
2π(σ2

s+bσ2

B
)

if L2α

ρL
→ b ∈ [0,∞),

L2 logL
2πσ2

s
if L2 logL

ρL
→ 0.

Then if we measure time in units of ωL the genealogy of a uniform random
sample from T(L) converges in law to the Kingman coalescent.

In particular, we see that big events can change the effective population
size, even though the genealogy is asymptotically determined by a Kingman
coalescent.

For α = 1, so that big events affect a significant proportion of the species
range, the picture is mathematically much richer:

Theorem 4.7 (Summary of Theorem 3.7 of Barton, Etheridge & Véber
2010). Suppose that α = 1.

1. if ρL/L
2 → b, rescaling the torus by 1/L, on timescale L2 the genealogy

converges to a spatial Lambda-coalescent on T(1) in which, between
mergers, lineages follow independent Brownian motions;

2. if ρL/(L
2 logL) → β, on timescale L2 logL the genealogy converges to

a (non-spatial) Lambda-coalescent;

3. if ρL ≫ L2 logL then on timescale L2 logL the genealogy converges to
a Kingman coalescent.

In the first case, lineages don’t equilibriate in between big events, so we
still see the spatial structure in the limit. The Lambda-coalescent in the
second case has a Kingman component. In the third case, lineages have all
coalesced through small events before they are covered by a big event.

We earlier claimed that including large scale extinction-recolonisation
events, could also explain the decay in the probability of identity that we see
in real data, in which the approximately exponential decay over intermediate
scales is replaced by a slower rate over large scales. Figure 8 is a simulation
of the two-dimensional version of our model taken from Barton, Etheridge
& Kelleher (2010). (In fact it is a simulation of a slightly different version
of the model than the one described above, but we expect the behaviour
to be the same.) It shows the logarithm of the probability of identity of
two individuals as a function of their separation x under three different
scenarios: just small events, just large events and a mixture of the two.
With just one size of event, we see the approximately exponential decay of
the Wright-Malécot formula, one of the characteristics one would hope for
from a ‘continuum stepping stone model’. When we have a mixture of small
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Figure 8: Simulation of the SLFV taken from Barton, Etheridge & Kelle-
her (2010), showing the logarithm of the probability of identity of two in-
dividuals as a function of their spatial separation under three different sce-
narios: just small events, just large events and a mixture of the two. The
impact of the large events in this last case is seen by the replacement of one
initially approximately exponential rate of decay by a slower rate of decay
at larger initial separations.

and large events we see the rate of decay of identity decrease at large spatial
separation, suggesting that large scale extinction/recolonisation events really
do provide one possible explanation of the pattern of large-scale correlations
in observed allele frequencies.

4.6 Duality between the SLFV and a spatial Lambda coales-

cent

So far we have not been very precise about the state space for our process.
It is often convenient, especially when proving convergence theorems, to
think of the SLFV as a measure-valued process. We shall now carefully
write down the space of measures and the moment duality with our spatial
Lambda-coalescent in the most studied case, when the space of possible
genetic types is K = {P,Q} as in our earlier models. It is convenient to
identify {P,Q} with {0, 1}. We suppose that the population evolves in R

d

(although the space of geographical locations could equally, for example, be
taken to be some subset of Rd, or a d-dimensional torus).

At each time t, the population is represented by a measure Mt on R
d ×
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K whose first marginal is Lebesgue measure on R
d. This corresponds to

assuming that individuals are uniformly distributed over R
d and for any

measurable subset E of Rd and κ ∈ {0, 1}, Vol(E)−1Mt(E × {κ}) gives the
proportion of individuals of type κ in E. The space

Mλ :=
{
M measure on R

d × {0, 1} : ∀f ∈ Cc(R
d),

∫

Rd

f(x)M(dx, dκ) =

∫

Rd

f(x)dx
}

(31)

of such measures is equipped with the topology of vague convergence, which
makes it a compact set (c.f. Lemma 1.1 in Véber & Wakolbinger 2015). Here
Cc(R

d) denotes the space of all compactly supported continuous functions on
R
d. A standard disintegration theorem implies the existence of a measurable

mapping wt : R
d → [0, 1] such that

Mt(dx, dκ) =
(
wt(x)δ0(dκ) + (1− wt(x))δ1(dκ)

)
dx. (32)

Morally, wt(x) represents the local fraction of individuals of type 0 at site
x ∈ R

d at time t, and we abuse terminology and call it the ‘density’ of M .
Note that wt is only defined up to a Lebesgue null set, that is two mappings
wt and w̃t will be equivalent if and only if

Vol
({
x ∈ R

d : wt(x) 6= w̃t(x)
})

= 0.

We often express everything in terms of a representative w of the measure-
valued evolution, but when we write down, for example, scaling limits, we
are typically starting from a measure-valued process and proving weak con-
vergence in the space of measure-valued processes.

The SLFV, thought of as a measure-valued process, can be characterised
through its generator acting on test functions of the form

ΨF,f(M) := F (〈f,w〉) = F

(∫

Rd×{0,1}
f(x)1{0}(κ)M(dx, dκ)

)
, (33)

where w is any representative of the density of M , f ∈ Cc(R
d) and F ∈

C1(R) (the space of all continuously differentiable functions on R). These
test functions are dense in C(Mλ) (in the supremum norm topology).

For w : Rd → [0, 1], x ∈ R
d, r > 0 and u ∈ [0, 1], define

Θ+
x,r,u(w) := 1B(x,r)cw + 1B(x,r)((1 − u)w + u), and

Θ−
x,r,u(w) := 1B(x,r)cw + 1B(x,r)(1− u)w. (34)

These correspond to the value of w immediately after a reproduction event
of impact u affecting B(x, r), with ‘+’ indicating that the parent was type
0 (P ) and ‘−’ indicating that it was type 1 (Q).
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Writing Vr for the volume of a ball of radius r, we can now write down
the generator for the SLFV driven by a Poisson Point Process Π of intensity
dt⊗ dx⊗ µ(dr)νr(du):

LΨF,f(M) =

∫

Rd

∫ ∞

0

∫ 1

0

∫

B(x,r)

1

Vr

[
w(y)F (〈f,Θ+

x,r,u(w)〉)

+ (1− w(y))F (〈f,Θ−
x,r,u(w)〉) − F (〈f,w〉)

]
dy νr(du)µ(dr) dx (35)

This is just the generator of a jump process.

Duality

In our original description of the dual process of coalescing ancestral lineages,
we argued heuristically that we could reverse the Poisson Point Process of
events with respect to time. The simplest route to a rigorous statement of
duality is in terms of generators, and yields ‘weak duality’ in the sense of
Section 2.2. This will later extend to the case in which we include natural
selection in our models.

First we define the process (Ξt)t≥0 of ‘ancestral lineages’ driven by an

independent copy, Π̃ of Π (the Poisson Point Process that drove reproduction
events).

Let Mp(R
d) denote the set of all finite point measures on R

d, which
we endow with the topology of weak convergence. The process (Ξt)t≥0 will
take its values in Mp(R

d): each atom of Ξt will represent the location of a
potential ancestor, t units of time in the past.

Definition 4.8. Let Ξ0 ∈ Mp(R
d), and let us define the Mp(R

d)-valued
process (Ξt)t≥0 with initial value Ξ0 as follows. We set Ξ0 = Ξ0 and, for
convenience, at every time t ≥ 0 we write

Ξt =

Nt∑

i=1

δξit ,

where Nt = Ξt(R
d) and some of the ξit may be identical. Note that the

ordering by 1, . . . , Nt of the atoms is arbitrary and will play no rôle in the
updating of Ξt.
For every (t, x, r, u) ∈ Π̃N :

1. each ξit− ∈ B(x, r), independently, is given a mark with probability u
(or not with probability 1− u);

2. if at least one of the ξit− is marked, to form Ξt remove all the marked
atoms from Ξt− and add a new atom at a location drawn uniformly at
random from within B(x, r).
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If no Ξt− is marked, then nothing happens.

The point measure Ξt always has at least one atom.
The difficulty that we face in establishing a duality relation between

our SLFV (Mt)t≥0 and the process of coalescing lineages (Ξt)t≥0 is that the
density wt of the SLFV is only defined Lebesgue a.e. and so the obvious
candidate for a duality function will not make sense. However, if, instead
of taking deterministic points x1, . . . , xk, we take random points, with a
distribution which has a density ψ with respect to Lebesgue measure on
(Rd)k, then we can establish the corresponding duality.

Proposition 4.9. Any Mλ-valued Markov process (Mt)t≥0 with generator
L defined by (35) is dual to the process (Ξt)t≥0, in the sense that for every
k ∈ N, ψ ∈ C((Rd)k) ∩ L

1((Rd)k), M0 ∈ Mλ and t ≥ 0, we have for any
choice of the representatives w0 (resp., wt) of the density of M0 (resp., Mt):

EM0

[ ∫

(Rd)k
ψ(x1, . . . , xk)

{ k∏

j=1

wt(xj)

}
dx1 · · · dxk

]

=

∫

(Rd)k
ψ(x1, . . . , xk)EΞ[x1,...,xk]

[ Nt∏

j=1

w0

(
ξjt
)]
dx1 · · · dxk. (36)

Remark 4.10. The right hand side of the duality relation is defined and
independent of the choice of representative of the density w0. This follows
because if the law of (ξ10 , . . . , ξ

k
0 ) is absolutely continuous with respect to

Lebesgue measure on (Rd)k, so too is the law of ξ1t , . . . , ξ
Nt
t ) on (Rd)Nt (con-

ditional on Nt). We do however need to include the ‘extra’ integration with
respect to ψ to ensure that everything is well defined.

5 Natural selection

5.1 Selection in the Wright-Fisher and Moran models

There are many ways of introducing selection into a model for allele fre-
quencies, and indeed selection can take many forms. We begin with the
simplest, in which there are just two alleles, P and Q say, and individuals
carrying the Q-allele see a slight increase in their fecundity relative to those
carrying the P -allele. For now, we assume a haploid population, with no
spatial structure.

Recall that in the Wright-Fisher model, during reproduction, each indi-
vidual produces a large number of juvenile offspring which go into a pool
from which the next generation is sampled. To incorporate selection, sup-
pose that individuals carrying the Q-allele produce (1 + s)-times as many
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juveniles as those carrying the P -allele. Thus, if the proportion of P -
individuals at generation t is p, the proportion of type P juveniles is

p∗ =
p

p+ (1 + s)(1− p)
=

p

1 + s(1− p)
,

for some s > 0, which we assume to be small. The number of type P offspring
will then be Binom(N, p∗) and so, in particular, the expected proportion of
type P offspring is p∗.

Note that the family sizes will follow a multinomial distribution (c.f. Re-
mark 1.4), but the weights will notbe equal.

We may write

p∗ − p =
p

1 + s(1− p)
− p = −sp(1− p) +O(s2),

and so to arrive at a diffusion limit for the allele freqencies, measuring time
in units of N generations as we did in the neutral case, we must take s to
be O(1/N). Indeed, setting s = s/N and writing ∆p for the change in allele
frequencies over a single generation, we find

E[∆p] = − 1

N
sp(1− p) +O

( 1

N2

)
,

E[(∆p)2] =
1

N
p(1− p) +O

( 1

N2

)
,

E[(∆p)4] = O
( 1

N2

)
,

and as N → ∞ the process of allele frequencies converges to the solution of
the s.d.e.

dp = −sp(1− p)dt+
√
p(1− p)dWt. (37)

The ancestral selection graph (ASG)

It is straightforward to find a moment dual for this system. We mimic what
we did in the neutral case and apply Itô’s formula to pn (with p varying and
n fixed),

d(pn) = npn−1dp +

(
n

2

)
pn−2d〈p〉

=
(
npn−1

(
− sp(1− p) +

(
n

2

)
pn−2p(1− p)

)
dt+martingale

=

(
ns
(
pn+1 − pn

)
+

(
n

2

)(
pn−1 − pn

))
dt+martingale.

Now thinking of p as fixed and seeking a process (nt)t≥0 satisfying the same
equation, we see that we should choose (nt)t≥0 to be the birth-death process
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with rates

n 7→ n+ 1 at rate ns; n 7→ n− 1 at rate

(
n

2

)
.

In other words if we think of n as counting particles, then each particle
branches at rate s and each pair of particles coalesces at rate one. It is
elementary to check that

E[p(t)n(0)] = E[p(0)n(t)].

We can arrive at the same limiting model for allele frequencies (and the
same branching and coalescing dual) via the Moran model with selection.
Recall that in the neutral Moran model, at rate

(N
2

)
a random pair is selected

from the population, one dies and the other reproduces. To mimic the effect
of reproduction in the Wright-Fisher model above, we bias the choice of
parent. Thus if a pair is picked consisting of one type P and one type Q
individual, with probability (1 + s)/2 it is the type Q that reproduces. It
is sometimes convenient to think of there being two types of event: neutral
events which occur at rate (1− s)

(
N
2

)
and ‘potential selective events’ which

happen at rate s
(
N
2

)
. At a potential selective event, if the pair of individuals

chosen consists of one P and one Q then with probability one it is the Q
that reproduces.

Once again taking s = s/N and letting N → ∞ we obtain (37) as a
limiting model for allele frequencies. To see why, consider the generator of
the continuous time Markov chain that governs the proportion p of P -alleles.

LNf(p) =
(
1− s

N

)(N
2

)
p(1− p)

(
f
(
p+

1

N

)
+ f

(
p− 1

N

)
− 2f(p)

)

+
s

N
2p(1− p)

(
f
(
p− 1

N

)
− f(p)

)

=
1

2
p(1− p)f ′′(p)− s

N

(
N

2

)
2p(1 − p)

1

N
f ′(p) +O

( 1
N

)

→ 1

2
p(1− p)f ′′(p)− sp(1− p)f ′(p),

which is the generator of the diffusion corresponding to (37).
The moment duality is easy to understand in the Moran context. If we

take a sample of size n(0) from the population at time t, then E[p(t)n(0)] is
the probability that they are all of type P . Neutral events correspond to
coalescence of ancestral lineages, as before, but when one of our lineages is
hit by a potential selective event - which happens in the limit at rate s per
lineage - in order for that lineage, which is the offspring of the event, to be
type P , both of the individuals sampled in the event must have been of type
P . To confirm that this was the case, we must trace back the ancestry of
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both individuals - hence the birth in the moment dual. All individuals in our
sample are of type P if and only if all the ‘potential ancestors’ in the moment
dual at time zero were of type P , and this has probability E[p(0)n(t)].

We have only discussed a weak duality. The branching and coalesc-
ing structure defined above describes the number of lineages in the ances-
tral selection graph (ASG), introduced in the companion papers Krone &
Neuhauser (1997) and Neuhauser & Krone (1997). In fact the ‘true ances-
try’ of the sample can be recovered from the full description of the ASG,
but that is beyond our scope here. Our main focus is on understanding the
interplay between natural selection and spatial structure.

Establishment probability

First we describe a classical argument which can be traced back at least to
Fisher (1930). Recall our Wright-Fisher model with selection, in which the
family sizes are determined by multinomial sampling with weights propor-
tional to the relative fitness of the parents.

In a population of N genes, suppose that a single favourable mutation
arises. What is the probability that it establishes? While the mutation is
rare, the number of offspring of a favoured individual is ≈ Binom(N, (1 +
s)/N) ≈ Poiss(1 + s). At least while the mutation is rare and population
size N is large, this is approximately independent for each favoured allele,
and so we can approximate the total number of favoured alleles by a Galton-
Watson branching process with Poiss(1 + s) offspring distribution.

Using this branching process approximation, the probability of extinction
of the favoured type satisfies

x = exp(−(1 + s)(1− x)),

and so the survival probability, y = 1− x, satisfies

y = 1− exp(−(1 + s)y) = (1 + s)y − 1

2
(1 + s)2y2 +O(y3).

Rearranging:
1

2
(1 + s)2y2 = sy =⇒ y ≈ 2s,

where we have used that since s is small, so is y.
One of the questions that we are going to ask is ‘does space matter?’

So, for example, if we have a favourable mutation arising in a spatially
structured population, how sensitive is its establishment probability to the
spatial structure?

Maruyama (1970), consider a population that is subdivided into demes
of (large) constant size. He supposed that the contribution of each deme
to the next generation is proportional to its size. Under these assump-
tions, he found that the probability of establishment of a newly arising
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favoured allele is independent of population subdivision. These are quite
strong assumptions on the spatial structure and Barton (1993) showed that
Maryuama’s conclusion breaks down if one adds extinction-recolonisation
events to colonies. Our next aim is to investigate the interaction of natural
selection and spatial structure in the much richer and more varied framework
of the SLFV.

5.2 Introducing selection to the SLFV

There are lots of ways to introduce selection to the SLFV, and we can fairly
easily cook up examples where two different mechansms lead to the same
process of allele frequencies, but different genealogies, Miller (2015). Here
we begin by mimicking the approach that we took above in the classical
models; that is we weight the selection of the parent during a reproduction
event in order to give a selective advantage to one of two possible genetic
types. Later we’ll talk briefly about other forms of selection that do not
simply favour one type over another.

Suppose that there are just two genetic types in the population, P and
Q, and that Q has a small selective advantage. Recall that in the SLFV,
reproduction events are driven by a Poisson Point Process Π with intensity
dt ⊗ dx ⊗ ξ(dr, du) = dt ⊗ dx ⊗ µ(dr)νr(du). If (t, x, r, u) ∈ Π, so that the
region B(x, r) is affected by a reproduction event, then mimicking what we
did above, if the proportion of P -alleles in the region at time t− is w, then
the probability that the parent (and hence all the offspring of the event) is
type P is

w

1 + s(1− w)
= w − sw(1− w) +O(s2) = (1− s)w + sw2 +O(s2).

Just as for the Moran model, we see that we can achieve the same probability
of type P offspring in two stages. For each event, with probability 1− s we
declare it to be neutral, in which case reproduction is exactly as in the
neutral SLFV. With probability s it is selective - in which case we want
the probability of the offspring all being type P to be w2, which we achieve
by sampling two ‘potential’ parents uniformly at random from the affected
region B(x, r) and only if both are type P are the offspring type P .

Using the thinning property of Poisson processes, we see that we can
think of the SLFV with selection as being driven by two independent Poisson
Point Processes, Πn and Πs with intensities (1 − s)dt ⊗ dx ⊗ ξ(dr, du) and
sdt ⊗ dx ⊗ ξ(dr, du) respectively. As in the neutral case, to make contact
with the notation in the original papers, we identify the type space {P,Q}
with {0, 1}.

Definition 5.1 (SLFV with fecundity selection (SLFVS)). Let µ be a σ-
finite measures on (0,∞), and let ν = {νr, r > 0} be a collection of proba-

65



bility measures on [0, 1] such that
∫ ∞

0

∫ 1

0
rduνr(du)µ(dr) <∞. (38)

Further, let ΠN and ΠS be two independent Poisson point processes on
R× R

d × (0,∞) × [0, 1] with respective intensity measures (1− s)dt⊗ dx⊗
µ(dr)νr(du) and sdt⊗ dx⊗ µ(dr)νr(du).

The spatial Λ-Fleming-Viot process with selection (SLFVS) with initial
condition M0 ∈ Mλ is an Mλ-valued process (Mt)t≥0 such that M0 = M0,
and whose dynamics are given as follows. If (t, x, r, u) ∈ ΠN , a neutral event
occurs at time t, within the closed ball B(x, r):

1. Sample a type κ according to the type distribution within B(x, r) just
before the event. That is, κ = 0 with probability V −1

r Mt−(B(x, r) ×
{0}), where Vr is the volume of a d-dimensional ball of radius r; oth-
erwise, κ = 1.

2. Update the value of Mt within B(x, r) by setting

Mt

∣∣∣
B(x,r)×{0,1}

:= (1− u)Mt−

∣∣∣
B(x,r)×{0,1}

+ u dx
∣∣∣
B(x,r)

⊗ δκ.

In other words, if wt−(y) is a representative of the density ofMt−, then
a representative of the density of Mt can be taken to be wt(y) = wt−(y)
if y /∈ B(x, r), and

wt(y) = (1− u)wt−(y) + u1{κ=0} if y ∈ B(x, r).

Similarly, if (t, x, r, u) ∈ ΠS, a selective event occurs at time t, within the
closed ball B(x, r):

1. Sample two types κ and κ′ independently, according to the type distri-
bution within B(x, r) just before the event. We interpret them as the
types of two ‘potential’ parents.

2. Update the value of Mt (only) within B(x, r) by setting

Mt

∣∣∣
B(x,r)×{0,1}

:= (1− u)Mt−

∣∣∣
B(x,r)×{0,1}

+ u dx
∣∣∣
B(x,r)

⊗ δmax{κ,κ′}.

That is, the offspring are of type 0 if and only if both potential parents
are of type 0. This time, a representative of the density of Mt can be
taken to be wt(y) = wt−(y) if y /∈ B(x, r), and

wt(y) = (1− u)wt−(y) + u1{κ=κ′=0} if y ∈ B(x, r).

Remark 5.2. There are many obvious ways in which to generalise this
model even if we are only interested in genic selection. For example, Etheridge,
Véber & Yu (2019+), where this process is introduced, considers different
driving Poisson Point Processes for neutral and selective events. Preprint
versions of the paper are available on the ArXiv.
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Figure 9: The wave of advance of an advantageous allele under the
SLFV with genic selection. Simulation due to Jerome Kelleher. the
popualation was seeded from a small region of type Q individuals in a sea
of type P . As time develops, as expected, the favoured type advances in
an almost circular wave; behind the wavefront, the favoured type becomes
fixed.

Backwards in time

We can also write down a spatial version of the ASG. Evolution of the
ancestry due to neutral events is exactly as before: lineages evolve in a
series of jumps; they can coalesce when covered by the same event.

At selective events, each lineage covered by the event is marked with
probability u. If at least one lineage is marked, then all marked lineages
are replaced by two ‘potential’ ancestral lineages whose locations are chosen
uniformly at random from B(x, r).

Note that unlike the ASG that we wrote down in the non-spatial context,
here we can see simultaneous branching and coalescence. Just as in the
nonspatial context, it is useful to note that an individual is type P if and
only if all lineages in the corresponding ASG are type P at any previous
time. We can use this to investigate the establishment and spread of a
favoured allele.

Figure 9 shows a snapshot of a population through which a favoured
allele is spreading. The ‘island’ is the favoured type. As one might expect,
the favoured type spreads in a roughly circular ‘wave’; behind the wavefront
the frequency of favoured individuals is eventually everywhere one.

5.3 Range expansion

Above we considered what happens when selecton is weak. At the other
extreme one can asks what happens when selection is extremely strong.
Thus, if an event falls on a region containing any type Q individuals, then
the parent is necessarily of type Q. Although not perhaps an interesting
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Figure 10: Sectoring in an expanding population. On the left hand
side is a picture, courtesy of Kevin Foster of Oxford Zoology, of an expand-
ing population of Pseudomonas aeruginosa. The population began with a
drop of a mixture of cells labelled with two different fluorescent markers
that do not effect the relative fitness of the cells. As the colony starts to
expand, the population segregates into sectors of different colours. See Ko-
rolev et al. 2011 for a full description of the experiments. On the right a
simulation, by Jerome Kelleher, of the SLFV model, modified to capture
range expansion.

model of selection in biological populations, this can be thought of as a
model of range expansion. We start from a cluster of individuals in our
population. If an event falls on a region that contains any individuals, then
a reproduction event takes place. This can be refined to include more than
one type of individual in the expanding population. In Figure 10 we
consider two equally fit types in a population expanding into new territory.
At time zero, we start from a small region in which both types are in a
homogeneous mixture. As time progresses, the population develops ‘sectors’
of the two different types. This sectoring is ubiquitous in experiments on
expanding colonies of bacteria. The population on the left in Figure 10 is a
colony of Pseudomonas Aeruginosa, that on the right is a simulation of our
model. The similarity is striking. To obtain different numbers of sectors in
our simulation, we can simply vary the ratio between the diameter of the
original well-mixed population and that of reproduction events.

5.4 Scaling limits of the SLFV with genic selection

The spread of a favoured allele is classically modelled through the (stochas-
tic) Fisher-KPP equation:

dw =
(1
2
∆w + sw(1− w)

)
dt+ 1d=1

√
1

Ne
w(1 − w)W (dt, dx),
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where W is space-time white noise and Ne is ‘neighbourhood size’. One can
think of this as a continuous space analogue of the stepping stone model with
selection, c.f. Definition 2.4 in the neutral case. Once again, when we try to
write down a continuum version of the equation in d = 2, we encounter a
problem - the equation has no solution.

It is natural to ask whether over appropriate temporal and spatial scales
the SLFV with selection will ‘look like’ a solution to the (stochastic) Fisher-
KPP equation. The answer will be ‘yes’. We won’t prove this, but instead
we’ll demonstrate how to identify the appropriate scaling. A key tool is the
ASG. We’d like to find a scaling under which the motion of a single ancestral
lineage converges to Brownian motion (to capture the Laplacian); in which
lineages branch at rate one (to capture the ‘logistic growth’ term); and, in
d = 1, for which coalescence is going to happen on the same timescale as
branching (to retain the genetic drift corresponding to the stochastic term
- recall from our discussion at the end of Section 3.3 that coalescence in the
dual process reflects genetic drift in the forwards in time equation).

There are lots of interesting limits that one can take with large-scale
extinction-recolonisation events, but our aim here is primarily to recover
the classical model, so we shall suppose that the population evolves entirely
through events that affect bounded regions in space. In fact it turns out
that we don’t really gain anything in the scaling limits that we care about
by taking the radii of events to be random (with radius picked according to
a measure of bounded support) and so we may as well take the radius of
events to be fixed.

In the argument that follows, we shall once again appeal to Lemma 3.5,
which told us that a simple random walk, started from zero, will make
O(

√
N) excursions away from zero before making one that reaches ±

√
N .

We also need the corresponding result in two dimensions. To see how it
will scale, we work by analogy with the radial part of a two-dimensional
Brownian motion:

dRt =
1

Rt
dt+ dBt,

where Bt is a one-dimensional Brownian motion. This time we see that
logRt is a martingale and the same argument that we used to prove Lemma 3.5
suggests that it takes O(logN) excursions away from zero for simple random
walk to reach distance O(

√
N) from the origin.

Although the constants will be different, these results should also reflect
the number of excursions that a pair of ancestral lineages (under the SLFVS)
will make away from regions where they have a chance to coalesce, before
reaching a separation of order

√
N .

Armed with this, we return to understanding the scaling of our SLFVS.
Let’s set un = u/nγ , sn = s/nδ, w(n)(t, x) = w(nt, nβx), and try to identify
the values of β, γ and δ that lead to the classical (stochastic) Fisher-KPP
equation in the limit.

69



We argue in terms of the behaviour of the ASG. A single ancestral lin-
eage jumps at a rate proportional to nun = n1−γ , and each jump is of size
O(1/nβ). To recover a diffusive scaling (and hence Brownian motion of
ancestral lineages in the limit), we take 2β = 1− γ.

Now we’d like to understand the branching. If we have a selective event,
then the two resulting lineages are created at a separation of order 1/nβ.
With strictly positive probability they move apart without coalescing, but in
order for us to ‘see’ this in the limit we need them to move apart to a distance
of order 1 in scaled space (corresponding to a random walk making jumps of
size order one escaping to distance order nβ). The argument above suggests
that the number of branches that we need before we see the corresponding
pair of lineages escape to a distance of O(1) from one another is

1. O(nβ), in d = 1;

2. O(log n), in d = 2;

3. O(1) in d ≥ 3.

To control the chance that the lineages coalesce when they come back to-
gether, note that if two lineages are covered by same event, given that one
jumps, they coalesce with probability O(1/nγ). That is, it takes O(nγ) re-
turns together before they coalesce. So in d ≥ 2 the probability that two
lineages created in a selection event make a ‘long’ excursion away from one
another before they coalesce is O(1).

In d = 1, we’d like to match the number of attempts required to reach
separation O(1) with the number of attempts to coalesce, so that we’ll see
both branching and coalescence in the limit, and so we take β = γ.

Selection events cause a branch on a given lineage at rate nunsn, so
to make branching events occur at rate one in our limiting ASG, we take
nunsn = O(1); that is 1− γ − δ = 0.

Putting this together, these arguments suggest that we should take β =
γ = 1/3, δ = 2/3. In Etheridge, Véber and Yu (2019+), it is shown that
choosing ξ(dr, du) = δR ⊗ δu (so that all events have the same radius and
impact), we set un = u/n1/3, sn = s/n2/3, and set w(n)(t, x) = w(nt, n1/3x).
Then as n→ ∞ we obtain convergence in an appropriate weak sense to the
solution of the (stochastic in d = 1) Fisher-KPP equation.

In fact we have to be a little careful. The proof requires some regu-
larity, and it turns out to be convenient to instead show convergence of
local averages. Let’s state the result a little more carefully. Let wt be any
representative of the density of the SLFVS. Define

wn
t (x) =

nd/3

VR

∫

Bn(x)
wn
t (y)dy,

where wn
t (·) = wnt(n

1/3·) and Bn(x) = B(x, n−1/3R). This scaling corre-
sponds to scaling down the spatial coordinate by n1/3 (so that distance one
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in the new units corresponds to distance n1/3 in the original units); we are
looking at spatial scale n1/3 at time n. The random variable wn

t (x) gives the
local proportion of individuals of the unfavoured type 0 in a small neigh-
bourhood (of radius n−1/3R) of the point x and at time t in these new units
(corresponding to a ball of radius R at time nT in our original units).

We write M
n
t for the random measure (taking its values in Mλ) with

representative wn
t .

Remark 5.3. Note that the process M
n
t is not Markov - the change in the

value of wn
t (y) due to an event affecting B(x,R) will depend on the geometry

of (and the genetic diversity within) the intersection B(n1/3y,R)∩B(x,R).

Theorem 5.4 (Etheridge, Véber, Yu (2019+)). Suppose that (M
n
0 )n≥1 con-

verges in distribution to some M0 ∈ Mλ. Then, as n → ∞, the process
(M

n
t )t≥0 converges weakly in DMλ

[0,∞) towards a Markov process (M∞
t )t≥0

with initial value M∞
0 = M0. The limiting process is characterised as fol-

lows. Let

ΓR =
1

VR

∫

B(0,R)

∫

B(x,R)
(z1)

2dzdx (39)

(where z1 denotes the first coordinate of z).
(i) When d = 1, (M∞

t )t≥0 is the unique process for which, for every
choice of the representative w∞

s of the density of M∞
s at every time s, and

for every f, g ∈ C∞
c (R),

Zf :=

(
〈f,w∞

t 〉−〈f,w∞
0 〉−

∫ t

0

{
uΓR

2
〈∆f,w∞

s 〉−2Ruσ 〈f,w∞
s (1−w∞

s )〉
}
ds

)

t≥0

is a continuous zero-mean martingale with quadratic variation at time t equal
to

4R2u2
∫ t

0
〈f2, w∞

s (1− w∞
s )〉 ds.

Furthermore, the bracket process between Zf and Zg is given by

[
Zf ,Zg

]
t
= 4R2u2

∫ t

0
〈fg,w∞

s (1− w∞
s )〉 ds.

(ii) When d ≥ 2, (M∞
t )t≥0 is the unique (deterministic) process for

which, for every choice of the representative w∞
s of the density of M∞

s at
every time s, and for every f ∈ C∞

c (Rd) and t ≥ 0,

〈f,w∞
t 〉 = 〈f,w∞

0 〉+
∫ t

0

{
uΓR

2
〈∆f,w∞

s 〉 − uσVR 〈f,w∞
s (1− w∞

s )〉
}
ds.

Informally, in one space dimension, one can see the time-indexed fam-
ily of densities of the limiting process (M∞

t )t≥0 as a weak solution to the
stochastic partial differential equation

∂w

∂t
=
uΓR

2
∆w − 2Ruσw(1 − w) + 2Ru

√
w(1 − w) Ẇ

71



(independently of the representative chosen at every time t), where W is a
space-time white noise. In dimension d ≥ 2, on the other hand, the noise
term disappears in the limit and the time-indexed family of densities of
(M∞

t )t≥0 can be seen as a weak solution to the deterministic Fisher-KPP
equation

∂w

∂t
=
uΓR

2
∆w − uσVR w(1 − w).

Neighbourhood size revisited

In Theorem 5.4, un → 0 as n → ∞. This corresponds to high ‘neigh-
bourhood size’. We saw neighbourhood size before in the Wright-Malécot
formula; roughly it is inversely proportional to the local coalescence rate. In
a discrete time model, if we write η(x) for the probability that two lineages
at separation x will coalesce in the previous generation, then in d = 2

N =
2πσ2∫

R2 η(x)dx
,

where σ2 is the dispersal rate of lineages. One can think of it as a measure
of the number of ‘potential parents’ of an individual.

For the SLFV with fixed event size, if is

2πσ2∫
η(x)dx

=
1

u
,

because
η(x) = λu2Vol

(
B(0, R) ∩B(x,R)

)
,

and one can calculate σ2 = λuπR4/2 (see Barton et al. 2013).

Establishment probability

Just as for the non-spatial case, one can ask about things like the fate of a
newly arising favourable mutation. Consider d = 1. While the allele is rare,
if

dw =
(1
2
∆w + sw(1− w)

)
dt+ ε

√
w(1− w)W (dt, dx),

we can approximate 1−w ≈ 1, from which

dw ≈
(1
2
∆w + sw

)
dt+ ε

√
wW (dt, dx),

which is the density of a (supercritical) Dawson-Watanabe superprocess.
Chetwynd-Diggle & Etheridge (2018) show that one can find a superprocess
sitting within the neutral SLFV - a result which has been extended in current
work of Cox and Perkins.
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The ‘total mass’, found by integrating against the constant functionf ≡
1, solves

dX ≈ sXdt+ ε
√
XdBt,

a continuous state branching process. This suggests that establishment
probability doesn’t ‘feel’ the spatial structure when neighbourhood size is
large.

However, in a spatial continuum, neighbourhood size could be small
(think of the number of potential parents).

Small neighbourhood size

In the previous results, we chose a parameter n with which to scale time and
expressed all the other scaling parameters in terms of n. We could equally
think of the scaling as being relative to the local population density and
taking an approximation when that density is very high.

To understand how to interpret scalings when we hold the local popula-
tion density fixed, we return briefly to the biology. Recall that a geneticist
uses differences between DNA sequences of individuals sampled from the
population to infer something about the genealogical trees relating genes in
the sample. So the neutral mutation rate µ sets the timescale over which
we can observe the action of different forces of evolution.

Mutation rates are low, and scaling limits are insensitive to fine details
of our models, so we scale relative to the neutral mutation rate. Natural
questions are then:

1. Over what spatial scales can we expect to observe a signature of natural
selection?

2. When will we expect to see a signature of the existence of a favourable
allele in data? (That favourable allele may not have become ‘fixed’ in
the population.)

To gain some insight into this, we consider the SLFV with selection and
fixed impact u. We shall use analogous arguments to those in the high
neighbourhood size scaling to understand under what circumstances we can
expect a nontrivial scaling limit.

Fix u ∈ (0, 1). We shall once again only consider reproduction events
that affect bounded regions and again the possible scaling limits are all
captured if we take all reproduction events to affect regions of the same
radius. Set n = 1/µ and consider w(nt,

√
nx). (Note that since u is fixed,

nun is order n and so the scaling of space by
√
n corresponds to the diffusive

scaling, and is forced upon us if we want a nontrivial limit for the motion of
ancestral lineages.)

When two branches arise in our ASG, they may coalesce again essentially
immediately, or they may move apart. We only have a chance to ‘see’ that
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allele frequencies are different from those under neutrality if we see mutations
on the branches of the ASG while they are separated.

So in time units of order n, we need the rate at which we see branches
that will separate to distance of order one (in scaled units) appear in the
ASG to be order one. We can now use exactly the same heuristic as before.

At a branching event, lineages are born at separation order 1/
√
n. The

chance that they separate to order one before coming back to a separation
at which they can coalesce is

1. O(1/
√
n) in d = 1;

2. O(1/ log n) in d = 2;

3. O(1) in d ≥ 3.

So in one dimension we need the overall rate at which branches appear to
be O(

√
n) if ones that separate are to appear at rate O(1), whereas in two

dimensions we require rate O(log n) and in d ≥ 3 it suffices that they appear
at a rate of order one.

In other words, our ability to detect selection depends on dimension.
Branches appear at rate unsn and u is fixed. One can prove that in

1. d = 1, selection is only visible if s = O(1/
√
n), and the limiting ASG

is then embedded in the Brownian net;

2. d = 2, selection is only visible if s = O(log n/n), and the limiting ASG
is a ‘branching Brownian motion’;

3. d ≥ 3, selection is only visible if s = O(1/n), and the limiting ASG
Branching BM.

If neighbourhood size is small, then the efficacy of selection depends on an
individual’s ability to escape the crowding from its own close family (c.f. the
pain in the torus).

The results above can be found in Daniel Straulino’s thesis (2015), or
more rigorously in Etheridge, Freeman, Straulino (2017) for d = 1, and
Etheridge, Freeman, Penington, Straulino (2017) for d = 2. There are
technical challenges in dimensions d = 1 and d = 2 because nsn → ∞:
the branching rate is infinite in the limiting ASG, but almost all branches
are instantly annulled by coalescence.

5.5 Hybrid zones

So far we have only considered the simplest possible form of selection, in
which one allele confers a selective advantage to the carrier. There are
many different forms of selection, often involving interactions between mul-
tiple genetic loci. Here we continue to consider just one locus, but now we
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consider the interaction between the two copies of a gene carried by a diploid
individual.

Our interest arises from the study of hybrid zones. A hybrid zone is
a narrow geographic region where two genetically distinct populations are
found close together and hybridise to produce offspring of mixed ancestry.

They are maintained by a balance between selection and dispersal. Hy-
brid zones are prevalent in nature - thousands have been catalogued. Some
arise because of a change in the environment at the location where the
two populations meet. But some are maintained because although the two
populations can interbreed, the hybrids are less fit than either purebred
population. In this second scenario the hybrid zone can move around over
time.

Our aim in this section is to investigate the motion of the hybrid zone.
This is probably of more mathematical than biological interest, but it will
allow us to make contact with some other interesting models.

We begin with a mathematical model for selection against hybrids. In-
dividuals now carry two copies of a gene that we shall suppose occurs in just
two alleles: a and A. We assume so-called Hardy-Weinberg proportions: if
w̄ = is the proportion of a-alleles across the population, then the proportions
of individuals carrying the possible combinations of a and A alleles is

aa aA AA

w̄2 2w̄(1− w̄) (1− w̄)2
.

In an infinite population of monoecious individuals (meaning the indi-
vidual has both male and female parts as in many plants and invertebrates),
at least provided male and female gametes are produced at equal frequency,
then even if the parental population is not at Hardy-Weinberg equilibrium,
the offspring will be. [Hardy derived this in a paper in (1908) that mathe-
matically debunked the view that dominant alleles would take over a popu-
lation.]

Individuals of type aa or AA are called homozygotes, those of type aA
are heterozygotes. To model a hybrid zone that is maintained by selection
against heterozygosity, we shall take relative fitnesses:

aa aA AA

1 1− s 1
.

Suppose that before reproduction the proportion of type a alleles in the
population is w̄. During reproduction, each heterozygote produces (1 − s)
times as many germ cells (cells of same genotype) as a homozygote. Germ
cells split into an effectively infinite pool of gametes (containing just one
copy of gene). The proportion of type a in this pool is

w̄∗ =
w̄2 + w̄(1− w̄)(1− s)

1− 2sw̄(1− w̄)
= (1− s)w̄ + s(3w̄2 − 2w̄3) +O(s2)

= w̄ + sw̄(1− w̄)(2w̄ − 1) +O(s2).
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Figure 11: The hybrid zone between two species of mice: Mus musculus (in
the north) and M. domesticus (in the south).

In an infinite population, if s = α
N (where N is large), measuring time

in units of N generations, as N → ∞,

dw̄

dt
= αw̄(1− w̄)(2w̄ − 1).

Adding dispersal yields

∂w

∂t
=
m

2
∆w + αw(1 − w)(2w − 1).

This is a special case of the Allen-Cahn equation. Figure 11 shows one of
the most famous textbook examples of a hybrid zone. Hybrid zones are
typically very narrow. Under the Allen-Cahn equation, the width of the
zone is ≈

√
2m/α. If we want to understand their motion over long time

scales, then we may as well ‘zoom out’ so that they become one-dimensional.
Applying a diffusive rescaling t 7→ t

ε2
, x 7→ x

ε , the Allen-Cahn equation
becomes

∂w

∂t
=
m

2
∆w +

α

ε2
w(1 − w)(2w − 1).

For convenience, set m = 2, α = 1. It is well known in the p.d.e. literature
that for sufficiently regular initial conditions, the solution to this equation
converges, as ε → 0, to the indicator function of a region whose boundary
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evolves according to mean curvature flow. We focus on two dimensions, in
which case mean curvature flow is just curvature flow.

Let S1 denote the unit circle in R
2. Let Γt : S1 → R

2 be a family
of smooth embeddings, indexed by t ∈ [0,T). We write nt(u) for the unit
(inward) normal vector to Γt at u and κ = κt(u) for the curvature of Γt at
u. Then Γt evolves according to curvature flow if

∂Γt(u)

∂t
= κt(u)nt(u).

It is defined up to a fixed time T . Curvature flow has a rich and beautiful
mathematical theory. In particular, asymptotically as t ↑ T , the curve Γt

will tend towards a circle which then shrinks to a point, even if initially it
does not enclose a convex region.

Let d(x, t) be the signed distance from x to Γt. Choose w0 such that
Γ0 = {x ∈ R

2 : w0(x) = 1
2}, w0 <

1
2 inside Γ and > 1

2 outside. We have
fixed parameters so that

∂w

∂t
= ∆w +

1

ε2
w(1 − w)(2w − 1).

Theorem 5.5 (Chen 1992). Fix T ∗ ∈ (0, T ). Let k ∈ N. There exists
ε(k) > 0, and a(k), c(k) ∈ (0,∞) such that for all ε ∈ (0, ε(k)) and t
satisfying aε2| log ε| ≤ t ≤ T ∗,

1. for x such that d(x, t) ≥ cε| log ε|, we have w(t, x) ≥ 1− εk;

2. for x such that d(x, t) ≤ −cε| log ε|, we have w(t, x) ≤ εk.

If neighbourhood size were infinite, then this suggests that hybrid zones
maintained by selection against heterozygosity would evolve approximately
according to curvature flow.

The Allen-Cahn equation originally arose in statistical physics, where it
is more natural to consider solutions to the equation transformed so that
solutions take values in [−1, 1]. Setting v = 2w − 1, we have

∂v

∂t
= ∆v + v − v3.

Hairer, Ryser & Weber (2012), consider this equation (still in two dimen-
sions) with an additional noise term:

dv = (∆v + v − v3)dt+ σdW,

whereW is a mollified space-time white noise. They show that if the mollifier
is removed, solutions converge weakly to zero; the structure that we see in
the deterministic equation is destroyed. On the other hand, if the intensity
of W simultaneously converges to zero sufficiently quickly, then they recover
the deterministic equation.
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It is natural to ask whether hybrid zones will still evolve approximately
according to curvature flow in the presence of random genetic drift? Additive
mollified white noise is not a good model of genetic drift, so instead we add
selection against heterozygosiy to the SLFV.

Once again we start from the Wright-Fisher model. Recall that if the
proportion of a-alleles in the parental population is w̄, then under selection
against heterozygosity, the proportion of a-alleles in the effectively infinite
pool of gametes from which the generation is sampled is

w̄2 + w̄(1− w̄)(1− s)

1− 2sw̄(1− w̄)
= (1− s)w̄ + s(3w̄2 − 2w̄3) +O(s2)

= (1− s)w̄ + s(w̄3 + 3w̄2(1− w̄))

+O(s2).

Mimicking what we did when we introduced genic selection into the
SLFV, this suggests that for this form of selection too, we can think of there
being two types of event in the SLFV:

1. with probability (1− s) an event is neutral (as before);

2. with probability s, an event is selective and the probability that off-
spring are type a is w̄3 + 3w̄2(1 − w̄), where w̄ is the proportion of
a-alleles in the affected region immediately before the event.

For the selective events, we can once again think of choosing ‘potential
parents’ from the region. However, this time, we choose three potential
parents, and the type of the offspring will be the type of the majority of the
potential parents.

This gives a means of investigating the interplay between genetic drift,
spatial structure, and this form of selection. One might hope to be able
to modify Chen’s proof of convergence of the solution to the Allen-Cahn
equation under the diffusive scaling, but that proof is too rigid to adapt to
our setting. However, it turns out that there is a probabilistic approach to
Chen’s result, that is more flexible and can be adapted to include drift. The
full details of this (and the corresponding stochastic result) can be found
in Etheridge, Freeman & Penington (2017). Here we just present the main
ideas.

The key to this proof of the deterministic result is a representation of
the solution to the Allen-Cahn equation in terms of a ternary branching
Brownian motion, on which we superpose a ‘majority voting’ mechansim.
This is similar to the Skorohod (1964)/McKean (1975) representation of the
solution to the classical Fisher-KPP equation in terms of binary branching
Brownian motion, except that here the voting mechanism requires us to keep
track of the entire history of the branching process. It is an adaptation of
an idea of del Masi, Ferrari and Lebowitz (1986).
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Figure 12: Majority voting on a ternary tree. Starting at the leaves,
we move back through the tree. When we arrive at a branching event, the
vote of the parent is taken to be the ‘majority vote’ of the three offspring.
The resultant vote has been indicated at each branch point. In this example,
the vote at the root is 0.

To see how it works, first we describe ternary branching Brownian mo-
tion started from a single individual at the point x. That individual has
an exponential lifetime with parameter 1/ε2 (so mean ε2), during which it
follows a Brownian motion (with diffusion coefficient 2 in our scaling). At
the end of its lifetime, it dies and is replaced, at the location where it died,
by three offspring, which go on to behave, independently, in the same way
as their parent.

We write W (t) = for the whole tree of paths up to time t. For a fixed
function p : R2 → [0, 1], define a voting procedure on W (t) as follows.

1. Each leaf, Wi(t), independently, votes 1 with probability p(Wi(t)) and
otherwise votes 0.

2. At each branch point in W (t), the vote of the parent particle is the
majority vote of the votes of its three children.

This defines an iterative voting procedure, which runs inwards from the
leaves of W (t) to the root. Define Vp(W (t)) to be the vote associated to
the root. This is illustrated in Figure 12.

Proposition 5.6. If W (t) denotes historical branching Brownian motion,
with branching rate 1

ε2
, and p : R2 → [0, 1], then

w(t, x) = P
ε
x [Vp(W (t)) = 1]

solves
∂w

∂t
= ∆w +

1

ε2
w(1− w)(2w − 1), w(0, x) = p(x).
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Idea of proof:
The justification for this follows that of the corresponding justification

of the Skorohod/McKean representation of the solution to the Fisher-KPP
equation. Our aim is to evaluate

lim
δt↓0

(
w(t+ δt, x)− w(t, x)

δt

)
.

Our approach is to partition over what happens to the ternary branching
Brownian motion that determines w(t+ δt, x) in the first δt of time: either
the original individual dies, which happens with probability ≈ δt/ε2; or it
does not.

Let S be the first branch time of the branching Brownian motion. Let
V1, V2, V3 respectively be the votes of the three offspring created at S, each
corresponding to an independent branching Brownian motion running over
the time interval [S, t+ δt]. We have

w(t+ δt, x) = Ex

[
P
ε
WS

[at least 2 of the (Vi) are 1 |S ≤ δt]
]
P [S ≤ δt]

+ Ex

[
P
ε
Wδt

[V(W (t)) = 1] |S > δt
]
(1− P [S ≤ δt])

+O
(
(δt)2

)
, (40)

where Ex denotes expectation with respect to a two-dimensional Brownian
motion W started at the point x. The V1, V2, V3 are conditionally indepen-
dent (on the event {S ≤ δt}) random variables. Since we are only interested
in events up to order δt, and P[S ≤ δt] = O(δt), we only need evaluate each
of their expectations to O(1), and so, in particular, we may suppose that
no further branch has happened before time δt. Using the Markov property
of the branching Brownian motion, and assuming some continuity (so that
to first order we can approximate Vi by assuming that the ancestor of the
corresponding tree is still at x at time δt), we find that we can use the
approximation E[Vi] = w(t, x) +O(δt).

On the event that there has been no branch by time δt, the ancestor
of our branching Brownian motion has simply been following a Brownian
motion and, by the Markov property, its vote is that determined by majority
voting on a ternary branching Brownian motion started from Wδt, run over
a time interval 0, t]; that is, conditional on Wδt it is w(t,Wδt).

Combining these observations,

lim
δt↓0

w(t+ δt, x)− w(t, x)

δt
=

1

ε2

(
w(t, x)3 + 3w(t, x)2

(
1− w(t, x)

)
−w(t, x)

)

+ lim
δt↓0

(Ex [w(t,Wδt)]− w(t, x)

δt

)

= ∆w(t, x) +
1

ε2
w(t, x)

(
1−w(t, x)

)(
2w(t, x) − 1

)
,
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as required. ✷

With this representation of solutions to the equation, Chen’s result be-
comes

1. for x with d(x, t) ≥ cε| log ε|, Pε
x [Vp(W (t)) = 1] ≥ 1− εk;

2. for x with d(x, t) ≤ −cε| log ε|, Pε
x [Vp(W (t)) = 1] ≤ εk.

The proof proceeds in two steps. The first is to find a one-dimensional
analogue in the case p(x) = 1{x≥0}. This is rests on symmetry, monotonicity
for this p and amplification of bias through majority voting -

if p < 1
2 p3 + 3p2(1− p) < p,

if p > 1
2 p3 + 3p2(1− p) > p.

The second step is to couple a two-dimensional Brownian motion W and a
one-dimensional Brownian motion B in such a way that d(Ws, t− s) is well
approximated by Bs whenWs is close to Γt−s. This requires some regularity
assumptions on the initial condition.

This approach parallels the approximation of the solution by a one-
dimensional standing wave in Chen (1992).

Remark 5.7. The majority voting scheme works very well - the symme-
try is a powerful tool. Not surprisingly, one can find voting schemes for
other nonlinearities, although the representation may not be very useful.
O’Dowd (2019) showed that if P (u) is any polynomial with P (0) ≥ 0 and
P (1) ≤ 0 (or vice versa), then the solution to

∂u

∂t
= ∆u+ P (u),

can be represented in terms of a historical n-ary branching Brownian motion
and a voting scheme (possibly random at each branching event).

In order to study our ‘stochastic’ hybrid zones, we consider the dual
process of branching and coalescing lineages to the SLFV with selection
against hetrozgosity. As in the case of genic selection, we divide events
into neutral events (which can cause jumps and coalescence) and selective
events. During a selective event, if any ancestral lineage is affected (that is
marked), three ‘potential’ parents are born. We superpose majority voting
on the resulting branching and coalescing structure in exactly the same
way as we imposed it on the ternary branching Brownian motion. If the
impact of each event converges to zero sufficiently quickly, then with high
probability we don’t see any coalescence of ancestral lineages, and we are
left with majority voting on a process that is very close to ternary branching
Brownian motion.
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Relaxing the symmetry

If homozygotes aa and AA are not equally fit, then our Allen-Cahn equation
must be modified. Assuming still that heterozygotes are less fit than either
homozygote, we arrive at an equation of the form

∂u

∂t
=

1

2
∆u+ su(1− u)(2au− 1)

=
1

2
∆u+ sau(1− u)(2u− 1) + s(a− 1)u(1 − u).

The solution to this equation spreads across space with type a eventually
taking over if a > 1. The timescale is faster than curvature flow. In fact
the behaviour is quite sensitive to asymmetry. Mitch Gooding (2018) shows
that if

∂w

∂t
= ∆w +

1

ε2
w(1 −w)(2w − (1 + νε)).

then the limit is no longer curvature flow, but a mixture of curvature flow
and flow at constant speed along the inward normal:

∂Γt(u)

∂t
=
(
ν + κt(u)

)
nt(u),

(defined up to a fixed time T ).
A smaller asymmetry takes us back to curvature flow; a larger asymmetry

results in constant flow along the inward normal on a different timescale.
What we’d really like is to understand random fluctuations in the posi-

tion of the hybrid zone caused by genetic drift and the genealogies relating
individuals sampled from the population.
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valued diffusions. In École d’été de probabilités de Saint Flour XXIX-
1999. Springer-Verlag.

Pitman, J. (1999). Coalescents with multiple collisions. Ann. Probab.,
27:1870–1902.

Sagitov, S. (1999). The general coalescent with asynchronous mergers of
ancestral lines. J. Appl. Probab., 26:1116–1125.

Shiga, T. (1988). Stepping stone models in population genetics and popu-
lation dynamics. In et al, S. A., editor, Stochastic processes in physics
and engineering. D Reidel Publishing Company.

simoni, L., Calafell, F., Pettener, D., Bertranpetit, J., and Barbujani, G.
(2000). Geographic patterns of mtDNA diversity in europe. Am. J.
Hum. Genet., 66:262–278.

Skorohod, A. V. (1964). Branching diffusion processes. Th. Prob. Appl.,
9:492–497.

Sudbury, A. (1977). Clumping effects in models of isolation by distance. J.
Appl. Prob., 14(4):319–395.

Taylor, J. E. (2009). The genealogical consequences of fecundity variance
polymorphism. Genetics, 182(3):813–837.
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