Critical value of an anisotropic percolation on \mathbb{Z}^2

Hao Xue

École Polytechnique Fédérale de Lausanne

Abstract:

We consider an anisotropic finite-range bond percolation model on $\mathbb{Z}^2 = \{(x,i) : x, i \in \mathbb{Z}\}$. For any *i* fixed, i.e. in the *i*-th horizontal layer, the edges $\langle (x,i), (y,i) \rangle$ for $1 \leq |x - y| \leq N$ are open with probability 1/2N. For any *x* fixed, the vertical edges connecting two nearest neigbor vertical vertices $\langle (x,i), (x,i+1) \rangle$ are open with probability $\epsilon(N)$. If $\epsilon = \kappa N^{-2/5}$, we see a phase transition in κ : there exist positive constant C_1, C_2 such that when $\kappa < C_1$, there is no percolation and when $\kappa > C_2$, percolation occurs. This result also partially answered the conjecture proposed by Fontes, Marchetti, Merola, Presutti and Vares(*J. Stat. Phys.* (2015) **161**, 91-123).

Based on joint work with Thomas Mountford and Maria Eulália Vares (arxiv.org/abs/1904.11030).