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The Kardar-Parisi-Zhang (KPZ) Universality Class

Universality Class for 1 + 1 Stochastic Growth Models

» The universality class concept is an artifact of modern
statistical mechanics that systemizes the idea that there
are a few but important characteristics that determine the
scaling behaviour of a stochastic model.

» In 1 4 1 stochastic growth models the object of interest is a
height function h(x, t) over the one-dimensional substrate
x € R attime t > 0, whose evolution is described by a
random mechanism.

» For fairly general models one has a deterministic
macroscopic shape for the height function and its
fluctuations, under proper space and time scaling, are
expected to be characterized by a universal distribution.



The Kardar-Parisi-Zhang (KPZ) Universality Class

Universality Class for 1 + 1 Stochastic Growth Models

» For instance, growth interfaces whose fluctuations are
described by Gaussian statistics are said to be in the
Gaussian universality class.

» In 1986, the existence of a new universality class was
proposed by Kardar, Parisi and Zhang (KPZ) where the of
stochastic growth evolution possesses a non-linear local
slope dependent rate that.

» The KPZ equation, d;h = }(9xh)? + 02h + ¢, is a canonical
example of such a growth model, providing its name to the
universality class.



The Kardar-Parisi-Zhang (KPZ) Universality Class

Universality Class for 1 + 1 Stochastic Growth Models

» In opposition to the Gaussian universality class, they
predicted that the height function has fluctuations of order
t'/3, and on a scale of t3/3 that non-trivial spatial
correlation is achieved (KPZ scaling exponents).

» lllustrations of natural phenomena within this universality
class include turbulent liquid crystals, bacteria colony
growth and paper wetting, which are conjectured to
converge under KPZ scaling to a universal space-time
process h(x), called the KPZ fixed point.



The Kardar-Parisi-Zhang (KPZ) Universality Class

Universality Class for 1 + 1 Stochastic Growth Models

» The KPZ universality class became a notorious subject in
the literature of physics and mathematics and, in the late
nineties, a breakthrough was presented by Baik, Deift and
Johansson (1999). (Exact formulas for the PNG model.)

» In the past twenty years there has been a significant
amount of improvements of the theory. The exact statistics
for certain initial geometries were computed using
integrable models.

» A major step was achieved recently by Matetski, Quastel
and Remenik (2017) using the totally asymmetric simple
exclusion process (TASEP).



Totally Asymmetric Simple Exclusion Process

TASEP

» Markov process (7;, t > 0) with state space {0, 1}Z.
» When n;(x) = 1, we say that site x is occupied by a
particle at time ¢, and it is empty if n:(x) = 0.

» Particles jump to the neighbouring right site with rate 1
provided that the site is empty (the exclusion rule).



TASEP

Particles jump to the right with rate 1
provided the site is empty.




TASEP

Particles jump to the right with rate 1
provided the site is empty.




TASEP

Particles jump to the right with rate 1
provided the site is empty.




TASEP

Particles jump to the right with rate 1
provided the site is empty.




TASEP

Particles jump to the right with rate 1
provided the site is empty.




TASEP

Particles jump to the right with rate 1
provided the site is empty.




TASEP

Particles jump to the right with rate 1
provided the site is empty.




Interface Growth Model

TASEP Growth
Let N; denote the total number of particles which jumped from
site 0 to site 1 during the time interval [0, t], and define

2N+ Yo, 4 (1= 2m(j))  fork > 1
(k) =\ 2N fork=0
2N — Z?:k+1(1 —2mp(j)) fork < —1.



Interface Growth Model

TASEP Growth

» Markov process (h;, t > 0) with state space ZZ.

» hi(k) is the value of height function at position k € Z at
time .

» Local minimum becomes local maximum with rate 1.



TASEP Growth




TASEP Growth




TASEP Growth




TASEP Growth




TASEP Growth




TASEP Growth

Figure: Narrow Wedge Initial Profile (Patrick Ferrari, Univ. Bonn).
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TASEP Growth

Figure: Narrow Wedge Initial Profile (Patrick Ferrari, Univ. Bonn).
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TASEP Growth

Figure: Flat Initial Profile (Patrick Ferrari, Univ. Bonn).
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TASEP Growth

Figure: Flat Initial Profile (Patrick Ferrari, Univ. Bonn).
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TASEP Growth

Continuous time = 411

Figure: Scaling in a n?/3 x n'/3 rectangle.



TASEP Growth and the KPZ Fixed Point

Let ) )
tn — hy) (|2xn?/3]
bnt(X) := 2tr;ﬂ(/s ) )
where | x| denotes the integer part of x € [—a, a] C R.

Theorem [Matetski, Quastel and Remenik '17]
If

dist

lim bno(-) ="0(),

n—oo
then .
dist.

dim bnt(-) = be(5h),
where (h:(-; ), t > 0) is the KPZ fixed point whit ho = b.



The KPZ Fixed Point and Stochastic Integrability

It is the unique time homogenous Markov process

(b¢(-;h), t > 0) taking place on UC (upper semicontinuous
functions plus growth control) with transition probabilities on
cylindrical sets given by

where K = K(b, y, t) is the Brownian Scattering operator as
introduced by Matetski, Quastel and Remenik (2017). The time
evolution of the transition probabilities can be linearized
through K (stochastic integrability).



Examples

Initial Profiles
» Narrow Wedge at x € R: h = dx where

0 forz =x
ox(2) = { -0 forz#x.
» Flat: h = 0.

» Stationary: h = b a two-sided BM with ¢ = 2.

Remark
The initial profile of particles h("™ might depende on n, in such

way that for any h € UC one can build a sequence of initial
particle profiles h(" such that h,o — b.



Symmetries

The “scaling” (v > 0) and “vertical shift” operators acting on real
functions § are denoted as

S,f(x) :=771i(v*x) and Af(x) := f(x) — §(0),
respectively.

» 1-2-3 Scaling: S,-1h.,-3,(+; Syb) st bt(-; b). In particular,
for v; == t1/3,
be(15) 2 s b1( S,,b), forall t>0.
» Time Stationarity: let b#(x) := px + b(x). Then

Aby(6%) = pr(), forall t> 0.



Long Time Behaviour of the KPZ Fixed Point

Ergodicity

» Find a sufficient and necessary condition on the initial
profile h such that

lim Ap(-;h) %= b().
t—oo
» Is {b* : 1 € R} the only collection of time stationary and

spatially ergodic (in terms of increments) processes for the
KPZ fixed point?



Long Time Behaviour of the KPZ Fixed Point

Stochastic Integrability

The description of the transition probabilities in terms of
Fredholm determinants (1) is suitable to prove finite
dimensional convergence to b for suitable initial conditions.
Matetski, Quastel and Remenik (2017)

Coupling Method

An alternative description of the KPZ fixed point using the
directed landscape constructed by Dauvergne, Ortmann and
Virag (2018) allow us to use particle systems techniques, such
as attractiveness and comparison (under a basic coupling),
which provide stronger results making use of a simpler
approach.



The Airy Sheet

Dauvergne, Ortmann and Virag (2018) showed the existence of
a translation invariant and symmetric two-dimensional scalar
field, called the Airy Sheet, such that

A(X,.¥) = b1(y:0x) + (v — x)2.

Furthermore, for fixed y € R, {A(x,y) : x € R} is distributed as
the Airy, process.



The Directed Landscape

There exists a unique space-time continuous random scalar
field,

{E(z, s;x,t);s,t e Rwith s < t, (x,y) € Rz} ,
called the directed landscape. It enjoys a metric composition:

L(x,r;y, t)= rgeaﬂg {L(x,r;z,8)+ L(z,s,y,t)} . (2)



The Directed Landscape

It also satisfies the following symmetries (as two-dimensional
continuous processes):

. o 2
£(2,0,x, 1) B S 1Az, x) - (x tZ) 7

and gi

L(z,8;x,t+ ) ISt L(z,0;x,1).
Furthermore, for r < s < t < ufixed L(z,r; x, 8) is independent
of L(z,t; x, u).



The KPZ Fixed Point and The Directed Landscape
The space-time process defined as
he.(x;b) := max {n(2) + £(z,5:x.1)} . ®)

for s < t, is distributed as the KPZ fixed point at time t, starting
at h attime s, so that h; = bo .
Basic Coupling

Given h1ho € UC, consider the coupling (h:(+; 1), b:(+; b2)),
constructed from (3):

hs(x; ) = max {(2) + £(z,six. 1)}

and
hst(X: h) = max {h(2) + L(z,8,x, 1)} .



Theorem

Let v > 0 and assume that there exist ¢ > 0 and a real function
1, that does not depend on « > 0, such that lim,_, ¢¥(r) =0
andforally > candr > 1

P(Sh(2) <rlz], V[z[=1) =1 =(r). (4)

Let a,t,n > 0 and set r; := v/£2/3a-1. Under the coupling (3),
where b and h are sample independently, there exists a real
function ¢, which does not depend on a, t,n > 0, such that
lim, 00 ¢(r) = 0 and for all t > max{c®, a2} and > 0 we
have

P( sup [Ab(x; ) — Abi(x; b)| >7l\/5> §¢(ft)+l-

xe[—a,a] nr



Proof

For the proof we use the metric composition (2) to prove
attractiveness and comparison under coupling (3). This allows
us to show that if a certain event E;(a) occurs, then

sup [Abi(x;h) — Abi(x;b)| < I(a),

x€[—a,q

where /;(a) is a nonnegative random variable such that

Ei(a) < 2.
It
Using the symmetries of £, we can show that under
assumption (4)
P(Ei(a)) < o(n) -



