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The Kardar-Parisi-Zhang (KPZ) Universality Class

Universality Class for 1 + 1 Stochastic Growth Models

I The universality class concept is an artifact of modern
statistical mechanics that systemizes the idea that there
are a few but important characteristics that determine the
scaling behaviour of a stochastic model.

I In 1 + 1 stochastic growth models the object of interest is a
height function h(x , t) over the one-dimensional substrate
x ∈ R at time t ≥ 0, whose evolution is described by a
random mechanism.

I For fairly general models one has a deterministic
macroscopic shape for the height function and its
fluctuations, under proper space and time scaling, are
expected to be characterized by a universal distribution.



The Kardar-Parisi-Zhang (KPZ) Universality Class

Universality Class for 1 + 1 Stochastic Growth Models

I For instance, growth interfaces whose fluctuations are
described by Gaussian statistics are said to be in the
Gaussian universality class.

I In 1986, the existence of a new universality class was
proposed by Kardar, Parisi and Zhang (KPZ) where the of
stochastic growth evolution possesses a non-linear local
slope dependent rate that.

I The KPZ equation, ∂th = 1
2(∂xh)2 + ∂2

x h + ξ, is a canonical
example of such a growth model, providing its name to the
universality class.



The Kardar-Parisi-Zhang (KPZ) Universality Class

Universality Class for 1 + 1 Stochastic Growth Models

I In opposition to the Gaussian universality class, they
predicted that the height function has fluctuations of order
t1/3, and on a scale of t2/3 that non-trivial spatial
correlation is achieved (KPZ scaling exponents).

I Illustrations of natural phenomena within this universality
class include turbulent liquid crystals, bacteria colony
growth and paper wetting, which are conjectured to
converge under KPZ scaling to a universal space-time
process ht (x), called the KPZ fixed point.



The Kardar-Parisi-Zhang (KPZ) Universality Class

Universality Class for 1 + 1 Stochastic Growth Models

I The KPZ universality class became a notorious subject in
the literature of physics and mathematics and, in the late
nineties, a breakthrough was presented by Baik, Deift and
Johansson (1999). (Exact formulas for the PNG model.)

I In the past twenty years there has been a significant
amount of improvements of the theory. The exact statistics
for certain initial geometries were computed using
integrable models.

I A major step was achieved recently by Matetski, Quastel
and Remenik (2017) using the totally asymmetric simple
exclusion process (TASEP).



Totally Asymmetric Simple Exclusion Process

TASEP
I Markov process (ηt , t ≥ 0 ) with state space {0,1}Z.
I When ηt (x) = 1, we say that site x is occupied by a

particle at time t , and it is empty if ηt (x) = 0.
I Particles jump to the neighbouring right site with rate 1

provided that the site is empty (the exclusion rule).
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Interface Growth Model

TASEP Growth
Let Nt denote the total number of particles which jumped from
site 0 to site 1 during the time interval [0, t ], and define

ht (k) =





2Nt +
∑k

j=1(1− 2ηt (j)) for k ≥ 1
2Nt for k = 0
2Nt −

∑0
j=k+1(1− 2ηt (j)) for k ≤ −1 .



Interface Growth Model

TASEP Growth
I Markov process (ht , t ≥ 0 ) with state space ZZ.
I ht (k) is the value of height function at position k ∈ Z at

time t .
I Local minimum becomes local maximum with rate 1.
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TASEP Growth
TASEP: step initial condition 10

Simulation with step initial condition: xk(0) = �k, k 2 N.
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Figure: Narrow Wedge Initial Profile (Patrick Ferrari, Univ. Bonn).
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TASEP GrowthTASEP: flat initial condition 11

Simulation with flat initial condition: xk(0) = �2k, k 2 Z.
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Figure: Flat Initial Profile (Patrick Ferrari, Univ. Bonn).
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TASEP Growth
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Figure 3. A simulation of the height function fluctuations for the γ = 1 corner
growth model started in the wedge initial condition. The curve represents the limit
shape (a parabola) while the piecewise linear line represents the height function.
Fluctuations live on the t1/3 scale and are correlated spatially in the t2/3 scale (as
indicated by the box). Special thanks to Patrik Ferrari for the above simulation.

1.2.3. Fluctuations: asymmetry versus symmetry. In 1985, based on physical methods known as
mode-coupling, [20] argued that the simple exclusion process with positive asymmetry γ > 0
should have height function fluctuations like t1/3 and exhibit non-trivial spatial correlations on
the t2/3 scale. After the work of [98] this behavior became known as being in the KPZ universality
class. On the other hand, the symmetric case γ = 0 corresponds to the EW (Edwards-Wilkinson)

class [65] and have fluctuations of scale t1/4 with spatial correlation on the scale of t1/2. For the
EW class, the limiting fluctuation statistics were also predicted (and relatively easily proved – see
for example [157]) to be Gaussian, however for the KPZ class the limiting fluctuation statistics
were not found until the work of Baik, Deift and Johansson [9, 93] and then Prähofer and Spohn
[137] (for the spatial correlation). These works only dealt with the totally asymmetric (γ = 1)
simple exclusion process for step initial condition (or equivalently the corner growth model in
the wedge geometry) – which is illustrated in Figure 3. Tracy and Widom [165] extended the
one-point fluctuation results to γ > 0 by way of their exact formula, recorded here as Theorem
1.4. It is clear that in order to treat all values of γ > 0 equivalently, we should speed up time
to compensate for smaller growth asymmetry: we should take time like t/γ. The t/2 which is
subtracted from hγ comes directly from the hydrodynamic theory. Putting together the one-point
fluctuation results of [93, 165] we have:

Theorem 1.5. For all γ ∈ (0, 1] and for ρ− = 0 and ρ+ = 1

lim
t→∞

P

(
h( t

γ , 0) − t
2

2−1/3t1/3
≥ −s

)
= FGUE(s).

Thus we see a critical point: For any γ > 0, fluctuations scale like t1/3 and have limiting GUE
statistics, while for γ = 0, fluctuations scale like t1/4 and have limiting Gaussian statistics. Thus,
scaling γ to zero with the other model parameters one would hope to find a scaling limit which

Figure: Scaling in a n2/3 × n1/3 rectangle.



TASEP Growth and the KPZ Fixed Point

Let

hn,t (x) :=
tn − h(n)

2tn

(
b2xn2/3c

)

n1/3 ,

where bxc denotes the integer part of x ∈ [−a,a] ⊆ R.

Theorem [Matetski, Quastel and Remenik ’17]
If

lim
n→∞

hn,0(·) dist .
= h(·) ,

then
lim

n→∞
hn,t (·) dist .

= ht (·; h) ,

where (ht (·; h) , t ≥ 0) is the KPZ fixed point whit h0 = h.



The KPZ Fixed Point and Stochastic Integrability

It is the unique time homogenous Markov process
(ht (·; h) , t ≥ 0) taking place on UC (upper semicontinuous
functions plus growth control) with transition probabilities on
cylindrical sets given by

Ph
(
∩m

i=1 {ht (xi) ≤ yi}
)

= det (I − K )L2({x1,...,xm}×R) , (1)

where K = K (h, y , t) is the Brownian Scattering operator as
introduced by Matetski, Quastel and Remenik (2017). The time
evolution of the transition probabilities can be linearized
through K (stochastic integrability).



Examples

Initial Profiles
I Narrow Wedge at x ∈ R: h ≡ dx where

dx (z) =

{
0 for z = x
−∞ for z 6= x .

I Flat: h ≡ 0.

I Stationary: h ≡ b a two-sided BM with σ = 2.

Remark
The initial profile of particles h(n) might depende on n, in such
way that for any h ∈ UC one can build a sequence of initial
particle profiles h(n) such that hn,0 → h.



Symmetries

The “scaling” (γ > 0) and “vertical shift” operators acting on real
functions f are denoted as

Sγf(x) := γ−1f(γ2x) and ∆f(x) := f(x)− f(0) ,

respectively.

I 1-2-3 Scaling: Sγ−1hγ−3t (·; Sγh)
dist .
= ht (·; h). In particular,

for γt := t1/3,

ht (·; h)
dist .
= S

γ−1
t
h1(·; Sγth) , for all t > 0 .

I Time Stationarity: let bµ(x) := µx + b(x). Then

∆ht (·; bµ)
dist .
= bµ(·) , for all t ≥ 0 .



Long Time Behaviour of the KPZ Fixed Point

Ergodicity

I Find a sufficient and necessary condition on the initial
profile h such that

lim
t→∞

∆h(·; h)
dist .
= b(·) .

I Is {bµ : µ ∈ R} the only collection of time stationary and
spatially ergodic (in terms of increments) processes for the
KPZ fixed point?



Long Time Behaviour of the KPZ Fixed Point

Stochastic Integrability
The description of the transition probabilities in terms of
Fredholm determinants (1) is suitable to prove finite
dimensional convergence to b for suitable initial conditions.
Matetski, Quastel and Remenik (2017)

Coupling Method
An alternative description of the KPZ fixed point using the
directed landscape constructed by Dauvergne, Ortmann and
Virag (2018) allow us to use particle systems techniques, such
as attractiveness and comparison (under a basic coupling),
which provide stronger results making use of a simpler
approach.



The Airy Sheet

Dauvergne, Ortmann and Virag (2018) showed the existence of
a translation invariant and symmetric two-dimensional scalar
field, called the Airy Sheet, such that

A(x , y) = h1(y ; dx ) + (y − x)2 .

Furthermore, for fixed y ∈ R, {A(x , y) : x ∈ R} is distributed as
the Airy2 process.



The Directed Landscape

There exists a unique space-time continuous random scalar
field,

{
L(z, s; x , t); s, t ∈ R with s < t , (x , y) ∈ R2

}
,

called the directed landscape. It enjoys a metric composition:

L(x , r ; y , t) = max
z∈R
{L(x , r ; z, s) + L(z, s; y , t)} . (2)



The Directed Landscape

It also satisfies the following symmetries (as two-dimensional
continuous processes):

L(z,0; x , t) dist .
= S

γ−1
t
A(z, x)− (x − z)2

t
,

and
L(z, s; x , t + s)

dist .
= L(z,0; x , t) .

Furthermore, for r < s ≤ t < u fixed L(z, r ; x , s) is independent
of L(z, t ; x ,u).



The KPZ Fixed Point and The Directed Landscape

The space-time process defined as

hs,t (x ; h) := max
z∈R
{h(z) + L(z, s; x , t)} , (3)

for s < t , is distributed as the KPZ fixed point at time t , starting
at h at time s, so that ht ≡ h0,t .

Basic Coupling
Given h1h2 ∈ UC, consider the coupling (ht (·; h1), ht (·; h2)),
constructed from (3):

hs,t (x ; h) = max
z∈R
{h(z) + L(z, s; x , t)} ,

and
hs,t (x ; h) = max

z∈R
{h(z) + L(z, s; x , t)} .



Theorem

Let γ > 0 and assume that there exist c > 0 and a real function
ψ, that does not depend on γ > 0, such that limr→∞ ψ(r) = 0
and for all γ ≥ c and r ≥ 1

P ( Sγh(z) ≤ r |z| , ∀ |z| ≥ 1 ) ≥ 1− ψ(r) . (4)

Let a, t , η > 0 and set rt :=
4
√

t2/3a−1. Under the coupling (3),
where b and h are sample independently, there exists a real
function φ, which does not depend on a, t , η > 0, such that
limr→∞ φ(r) = 0 and for all t ≥ max{c3,a3/2} and η > 0 we
have

P

(
sup

x∈[−a,a]
|∆ht (x ; h)−∆ht (x ; b)| > η

√
a

)
≤ φ (rt ) +

1
ηrt

.



Proof

For the proof we use the metric composition (2) to prove
attractiveness and comparison under coupling (3). This allows
us to show that if a certain event Et (a) occurs, then

sup
x∈[−a,a]

|∆ht (x ; h)−∆ht (x ; b)| ≤ It (a) ,

where It (a) is a nonnegative random variable such that

EIt (a) ≤
√

a
rt
.

Using the symmetries of L, we can show that under
assumption (4)

P (Et (a)) ≤ φ(rt ) .


