
Markov Chains and Unitary Dynamics

E. Jordão Neves
IME-USP

Plato’s Allegory of the Cave by Jan Saenredam, according to Cornelis van Haarlem, 1604



Our objectives here

I To provide a rough sketch of a very unusual strategy to study
Markov Chains.

I The strategy exploits beautiful mathematical tools which are not
well known among Probabilists, but in the cluttered Mathematical
Physics bag of tricks.

I The sketch only considers Simple Markov Chains, just to argue
that the strategy can deal with well known stuff, though from a
rather spooky point-of-view.

I We also indicate a weird open question that it poses, even for
simple Markov Chains.



Halmos Idea

Paul Halmos’ dilation theory: Represent operator-theoretic structures in
terms of conceptually simpler ones acting on larger spaces, in such a way
that the first is a projection of the later.

Inspired by this idea, we

I Construct a dilation for stochastic semigroup, acting on the
probability simplex ∆N ∈ RN as Unitary operators on the Complex
Hilbert space CN .

I Next, using standard mathematical tools from quantum mechanics
and quantum computing, we rewrite the problem as a Dynamical
System of Rotations in a Euclidian Sphere.

Unusual perspective:

the classical Semigroup trajectory is the orthogonal projection,
a shadow, of Rotations on a Euclidean Sphere into a

Probability Simplex inscribed in that sphere.



Markov Chains Setup

Finite state space: Σ = {1, . . . ,N}.

Dynamics defined by a N × N Rate Matrix Q, where qij ≡ Qij denotes
the rate with which the chain jumps from state i to state j . The total
rate of jumping out of state i is −qi ≡

∑
j 6=i qij

Stochastic Semigroup: St = etQ .

Acting on l1 space of probability measures on Σ:

Simplex : ∆N = {π ∈ RN : πl ≥ 0,
∑N

l πl = 1}.

So, if π0 = (πi )i∈S ∈ ∆N is a probability vector in RN describing the
distribution at time 0 of the chain then

πt = π0St

is the probability vector at time t.

We focus on the dynamics of {πt}t≥0.



Probabilities to Probability Amplitudes

Notation: write v = (vl )
N
l=i for a column vector in RN or CN .

We say that |ψ〉 ≡ (ψl)
N
l=i ∈ CN is a Probability Amplitude vector if

N∑
l=1

|ψl |2 = 1,

where, if z ∈ C, |z |2 = zz .

Given a probability vector π = (πl)
N
l=1 we define its Representation

|ψ〉 = |ψ(π)〉 = (ψl)
N
l=1 ∈ CN

such that

πl = |ψl |2, 1 ≤ l ≤ N



Remark: the precise definition of |ψ〉 is not essential in our setting, as
long as

πl = |ψl |2, 1 ≤ l ≤ N

.
For the Standard Representation we set, for 1 ≤ l ≤ N

ψl =
√
πl

In a more whimsical mood, inspired by the Plato Cave Allegory we can
also take the Plato Representation and set

ψl = πl + i
√
πl(1− πl), 1 ≤ l ≤ N.

so that πl = |ψl |2 = Re(ψl) (real part), 1 ≤ l ≤ N.

With this Plato Representation choice:
The real shadow of each Probability Amplitude is the actual Probability.



Now with Angle Parameters

Let θ = (θl)
N
l=1 be such that πl = cos2(θl/2), 1 ≤ l ≤ N.

The two representations of π = (πl)
N
l=1 as |ψ〉 = (ψl)

N
l=1

Plato representation: For 1 ≤ l ≤ N

ψl = cos2( θl
2

) + i sin( θl
2

) cos( θl
2

)

= 1+eiθl

2

Standard representation: For 1 ≤ l ≤ N

ψl =
√
πl = cos

(
θl

2

)

There are (N − 1) real-valued free parameters, as
∑N

l=1 cos2 (θl/2) = 1 or

N∑
l=1

cos

(
φN + θl

2

)
cos

(
φN − θl

2

)
= 0, with cos(φN ) =

2

N
− 1

.



Unitary Dynamics of Probability Amplitude Vectors

Given the stochastic dynamics {πt}t≥1 we now identify the
corresponding Unitary Dynamics {|ψt〉}t∈R.

To start, we define the associated Density Matrix

ρ = |ψ〉 〈ψ| ,

where 〈ψ| indicates the conjugate transpose of the column vector |ψ〉 = (ψl)
N
l=1

and

|ψl |2 = πl = cos2(θl/2), 1 ≤ l ≤ N

with

N∑
l=1

cos2(θl/2) = 1



This linear operator ρ, acting on the Hilbert space HN , is the natural
analog of the probability distribution π ∈ ∆N .

The density matrix is Hermitian, has trace one and
is a projector in HN (that is ρ2 = ρ).

The stochastic dynamics

πt = π0St

Will now be represented by equivalent unitary dynamics

|ψt〉 = Ut |ψ0〉 ⇐⇒ ρt = Utρ0U
∗
t

To identify {Ut}t≥0 corresponding to a given Markov Chain
we need a bit of Lie Algebra theory.



su(N) Lie Algebra Generators

Write {(|l〉)Nl=1} for the standard basis of the Hilbert Space HN ⊂ CN

The generators of the Lie algebra su(N) can be divided into three groups:

First, (N − 1) diagonal matrices (Cartan sub-algebra of su(N))

Λj =

√
2

j(j + 1)

(
|1〉〈1|+ |2〉〈2|+ . . .+ |j〉〈j | − j . |j+1〉〈j+1|

)
for 1 ≤ j ≤ N − 1.

And two other groups, one with symmetric

ΛS
lk = |k〉 〈l |+ |l〉 〈k|

and the other with antisymmetric matrices

ΛA
lk = i(|k〉 〈l | − |l〉 〈k|)

for 1 ≤ l < k ≤ N.

Generators are Hermitian, traceless and orthogonal.



Now we can write the N × N density matrix ρt = | |ψt〉 〈ψt | | as

ρt =
1

N
1 +

√
N − 1

2N
rt.Λ

where r.Λ =
∑N2−1

l=1 rl .Λl , is the inner product of r ∈ ΩN ⊂ RN2−1 and

the vector of generators Λ = (Λl)
N2−1
l=1 .

Probability Simplex: components of rt corresponding to the
(N − 1) Diagonal Generators.

Dynamics is defined with the Antisymmetric Generators.

πt (Probability Vector) ⇐⇒|ψt〉 ⇐⇒ ρt ⇐⇒ rt (Vector in a Sphere)

We now define Ut

Stochastic Semigroup etQ⇐⇒Ut Unitary dynamics



Expression of Ut

Suppose the Markov chain starts at state l ∈ {1, . . . ,N}

Let {φlk(t)}1≤l,k≤N be given from Kolmogorov’s equation

cos2 (φlk(t)/2) = Pt(Xt = k|X0 = l) = (etQ)lk

and αlk(t) be the Conditional Probability Amplitude given by

αlk (t) =
cos (φlk (t)/2)

sin (φll (t)/2)
.

Then

Ut = e i
φll
2 (t)(

∑
k 6=l αlk (t)ΛA

lk)

describes the unitary dynamics corresponding to {πt}t≥0.



Equivalent Euclidean formulation

Since

ρt =
1

N
1 +

√
N − 1

2N
rt.Λ

The orthogonal rotation dynamics of unit-norm rt ∈ RN2−1, with

r0 = (δlk)N
2−1

k=1 (initial state is l) given by

rt = Rtr0

is an equivalent Euclidean Rotation view of the unitary dynamics of |ψt〉.

Plato’s Cave Shadow:

(N − 1) of the components of rt follow
exactly

the classical trajectory of πt on the probability simplex.



Example: Two state Markov Chain: qubits

For N = 2, we have su(2): Lie algebra associated to Unitary
transformations in C2. Generators here are the Pauli Matrices

Λ1 =

(
1 0
0 −1

)
, ΛS

12 =

(
0 1
1 0

)
, ΛA

12 =

(
0 −i
i 0

)
,

and we have

ρt =
1

2
(1 + rt.σ)

where rt ∈ S2 ∈ R3 and r.σ ≡
∑3

l=1 rlσl

For probability vector π = [p, 1− p], set cos2(θ/2) = p and get, (Plato
Representation)

r =

 sin2 θ
sin θ cos θ

cos θ

 ∈ S2 ∈ R3



Two state Markov Chain: Bloch Sphere

Figure: |0〉 and |1〉 indicates the two Markov Chain states

Trajectories rt ∈ R3 (spherical coordinates):

φt = π/2− θt , and cos(θt) = 2πt − 1,

with πt = π0e
tQ , solution of associated Kolmogorov’s equation

In Quantum Computing this describes the smallest amount of
Quantum information:

the quantum bit or qubit.



Weird stuff

Quantum Mechanics exhibits several, experimentally verified, strange
phenomena.

A important weird ingredient in Quantum Computing is Entanglement
between two or more qubits.

Already in 1932 E. Majorana introduced a method (there are others) that
allow representing pure states of Quantum Spin system, with S > 1/2, in
terms of groups of qubits (S = 1/2).

The approach we just presented tells us that a Markov chain shadows the
dynamics of Quantum Spins which could be entangled.

Question: Are these crazy Quantum Weirdness stuff relevant
from our Markov Chain Shadow?...



Thanks!
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