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Our objectives here

» To provide a rough sketch of a very unusual strategy to study
Markov Chains.

» The strategy exploits beautiful mathematical tools which are not
well known among Probabilists, but in the cluttered Mathematical
Physics bag of tricks.

» The sketch only considers Simple Markov Chains, just to argue
that the strategy can deal with well known stuff, though from a
rather spooky point-of-view.

» We also indicate a weird open question that it poses, even for
simple Markov Chains.



Halmos |dea

Paul Halmos' dilation theory: Represent operator-theoretic structures in
terms of conceptually simpler ones acting on larger spaces, in such a way
that the first is a projection of the later.

Inspired by this idea, we

» Construct a dilation for stochastic semigroup, acting on the
probability simplex Ay € RV as Unitary operators on the Complex
Hilbert space CV.

» Next, using standard mathematical tools from quantum mechanics
and quantum computing, we rewrite the problem as a Dynamical
System of Rotations in a Euclidian Sphere.

Unusual perspective:
the classical Semigroup trajectory is the orthogonal projection,

a shadow, of Rotations on a Euclidean Sphere into a
Probability Simplex inscribed in that sphere.



Markov Chains Setup
Finite state space: ¥ = {1,...,N}.

Dynamics defined by a N x N Rate Matrix Q, where g; = Q;; denotes
the rate with which the chain jumps from state / to state j. The total
rate of jumping out of state j is —q; = Z#l. qij

Stochastic Semigroup: S; = '@,
Acting on /; space of probability measures on ¥:
Simplex : Ay = {r RV :m, >0, m =1}.

So, if 7° = (7)ies € Ay is a probability vector in RV describing the
distribution at time 0 of the chain then

7t =75,
is the probability vector at time t.

We focus on the dynamics of {7 }+>0.



Probabilities to Probability Amplitudes

Notation: write v = (v;)); for a column vector in RN or CV.

We say that [1)) = (1)), € CN is a Probability Amplitude vector if

N
Sl =1,
I=1
where, if z € C, |z|? = zZ.
Given a probability vector m = (7)Y, we define its Representation
) = [(m)) = ()it € CY
such that

m=y} 1<I<N



Remark: the precise definition of |¢) is not essential in our setting, as
long as
M= 1< I<N

For the Standard Representation we set, for 1 </ < N

Y =/m

In a more whimsical mood, inspired by the Plato Cave Allegory we can
also take the Plato Representation and set

1/)/:7T/+/'\/7F/(17’/T/),1§/§ N.
so that m; = |¢)|?> = Re(vy) (real part), 1 <1< N.

With this Plato Representation choice:
The real shadow of each Probability Amplitude is the actual Probability.



Now with Angle Parameters

Let 0 = (0,)), be such that 7, = cos?(6,/2), 1 </ < N.

The two representations of m = (), as [¢) = (Y1),
Plato representation: For 1 </ < N
Y = cos%%)-ﬁ-isin(%)cos(%)
— 149
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Standard representation: For 1 </ < N
Y = /T = cos (Z’)

There are (N — 1) real-valued free parameters, as E;\’Zl cos? (6,/2) =1 or

N
Zcos<¢N+01) os<¢N;01> =0, with cos(¢pn) = % -1

I=1




Unitary Dynamics of Probability Amplitude Vectors

Given the stochastic dynamics {7*};>1 we now identify the
corresponding Unitary Dynamics {|¢:) }eer.

To start, we define the associated Density Matrix

p=1¥) (Wl
where (1| indicates the conjugate transpose of the column vector |¢) = (),
and

|i)? = 7 = cos®(6,/2), 1< I <N

with

Z cos’(6;/2) =1

=1



This linear operator p, acting on the Hilbert space Hy, is the natural
analog of the probability distribution m € Ay.

The density matrix is Hermitian, has trace one and
is a projector in Hy (that is p? = p).

The stochastic dynamics

Will now be represented by equivalent unitary dynamics

[Ye) = Ut [vho) <= pr = Urpo U

To identify {U;}+>0 corresponding to a given Markov Chain
we need a bit of Lie Algebra theory.



su(N) Lie Algebra Generators
Write {(|I))I_,} for the standard basis of the Hilbert Space Hy C C"
The generators of the Lie algebra su(/N) can be divided into three groups:
First, (N — 1) diagonal matrices (Cartan sub-algebra of su(N))

2 PP .
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for1<j<N-1.

And two other groups, one with symmetric

N = 1K) (1] 11) (K]
and the other with antisymmetric matrices

Nk = i(Ik) (1] = 1) (k[)
for1</<k<N.

Generators are Hermitian, traceless and orthogonal.



Now we can write the N x N density matrix p; = | |1¢) (¢:] | as

A

*ll—&— N_lr
PN oN

2
where r.A = Z;V:fl ri.\;, is the inner product of r € Qn C RV’-1 and

_ N>—1
the vector of generators N = (), .

Probability Simplex: components of r; corresponding to the
(N — 1) Diagonal Generators.

Dynamics is defined with the Antisymmetric Generators.

7y (Probability Vector) <= |i;) <= p; <= r; (Vector in a Sphere)

We now define U;

Stochastic Semigroup @<= U, Unitary dynamics



Expression of U,

Suppose the Markov chain starts at state / € {1,..., N}
Let {&n(t)}1<ik<n be given from Kolmogorov's equation
cos” (¢ (t)/2) = Pe(Xe = k|Xo = 1) = (")

and a(t) be the Conditional Probability Amplitude given by

cos (¢i(t)/2)

k(D) = G (on(6)/2)

Then
U, = ei%(t)(zk#, an()A])

describes the unitary dynamics corresponding to {m:}+>o.



Equivalent Euclidean formulation

Since

_ll_i'_ N_l
Pr="N N

rt.,\

The orthogonal rotation dynamics of unit-norm r, € RV’ =1, with
ro = (6,k)k L1 (initial state is /) given by
r. = Riro

is an equivalent Euclidean Rotation view of the unitary dynamics of |1;).
Plato's Cave Shadow:

(N — 1) of the components of r; follow
exactly
the classical trajectory of 7; on the probability simplex.



Example: Two state Markov Chain: qubits

For N = 2, we have su(2): Lie algebra associated to Unitary
transformations in C2. Generators here are the Pauli Matrices

1 0 0 1 0 —i
n=o )=o) =0 0)

and we have

1
Pt = 5(1 =+ rt.U)

wherer, € S2cR3 and r.o = 2,3:1 roy

For probability vector m = [p, 1 — p], set cos?(6/2) = p and get, (Plato
Representation)
sin 6
r=|sinfcosf| € S* € R®
cos



Two state Markov Chain: Bloch Sphere

Figure: |0y and |1) indicates the two Markov Chain states
Trajectories r, € R3 (spherical coordinates):
¢¢ =7/2 — 0, and cos(6;) = 2w — 1,
with 7, = mpetQ | solution of associated Kolmogorov's equation

In Quantum Computing this describes the smallest amount of
Quantum information:
the quantum bit or qubit.



Weird stuff

Quantum Mechanics exhibits several, experimentally verified, strange
phenomena.

A important weird ingredient in Quantum Computing is Entanglement
between two or more qubits.

Already in 1932 E. Majorana introduced a method (there are others) that
allow representing pure states of Quantum Spin system, with S > 1/2, in
terms of groups of qubits (S = 1/2).

The approach we just presented tells us that a Markov chain shadows the
dynamics of Quantum Spins which could be entangled.

Question: Are these crazy Quantum Weirdness stuff relevant
from our Markov Chain Shadow?...
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