Local Convergence of Spatial Gibbs Random Graphs

Eric O. Endo¹
Department of Mathematics
NYU Shanghai, China

Jointly with:
Daniel Valesin (RUG, the Netherlands)

XXIII EBP - July 22-27, 2019

¹e-mail address: ericossamiendo@gmail.com

• Introduced by J.-C Mourrat and D. Valesin.

$$\mathcal{G} = \{g = (V, E) : V \subseteq \mathbb{Z} \text{ and } g \text{ is locally finite}\}.$$

• $N \ge 1$ natural number. Define $g = (V_N, E_N) \in \mathcal{G}$, where

$$V_N = \{1, \dots, N\},\ E_N \supseteq \{\{i, i+1\}: \ 1 \le i < N\}.$$

ullet \mathcal{G}_N be the set of these graphs.

- Consider $p \in [1, \infty]$.
- For $g \in \mathcal{G}_N$, define, for $p \in [1, \infty)$,

$$\mathcal{H}_{
ho}(g) = egin{cases} \left(rac{1}{inom{N}{2}} \sum_{\substack{x,y \in V_N: \ x < y}} (\mathrm{d}_g(x,y))^p
ight)^{rac{1}{p}} & ext{if } p \in [1,\infty); \ \sup \left\{\mathrm{d}_g(x,y): \ x,y \in V_N
ight\} & ext{if } p = \infty, \end{cases}$$

- $d_g(x, y)$ is the graph-theoretic distance of the graph g.
- $\mathcal{H}(g) := \mathcal{H}_{\infty}(g)$ is the diameter of the graph g.

• Consider $\gamma > 0$.

 $\mathbb{P}_{N,\gamma}$ on \mathcal{G}_N : independently, each edge xy, |x-y| > 1, is present in the graph with probability $p_{xy} = \exp(-|x-y|^{\gamma})$.

Question: What is the typical value of $\mathcal{H}(g)$ under $\mathbb{P}_{N,\gamma}$?

Answer: $\mathcal{H}(g) = O(N)$.

Problem

Find a new probability measure where the typical graphs have diameter smaller than O(N).

Let $b \in \mathbb{R}$.

$$\mathbb{P}_{N,\gamma}^{b}(g) = \frac{1}{Z_{N,\gamma}^{b}} e^{-N^{b} \mathcal{H}(g)} \cdot \mathbb{P}_{N,\gamma}(g),$$

where $Z_{N,\gamma}^b$ is the partition function.

- $e^{-N^b \mathcal{H}(g)}$ avoids large diameters.
- $\mathbb{P}_{N,\gamma}(g)$ avoids long edges.

Theorem (Mourrat, Valesin - Ann. Appl. Probab. '18)

For every $\alpha \in [0,1]$, there exist $\gamma > 0$ and $b \in \mathbb{R}$ such that, for every $\varepsilon > 0$,

$$\lim_{N\to\infty} \mathbb{P}_{N,\gamma}^b \left(\left| \frac{\log \mathcal{H}(G)}{\log N} - \alpha \right| < \varepsilon \right) = 1.$$

Mourrat, Valesin - Ann. Appl. Probab. '18

Figure: Plot of the function $b\mapsto \alpha(\gamma,b)$ for the three cases $\gamma\in(0,1)$, $\gamma>1$ and $\gamma=1$.

Define $\mathcal{E} = [0, \frac{1}{4}] \cup \bigcup_{k=2}^{\infty} \{\frac{k-1}{k}\}$ the missing points when $\gamma = 1$.

Main Problem

Define \mathbb{P}_{γ} be the probability measure on

$$\mathcal{G}_{\mathbb{Z}} = \{g \in \mathcal{G} : V(g) = \mathbb{Z}, \ E(g) \supset \{xy : |x - y| = 1\}\}.$$

so that each edge xy, $\left|x-y\right|>1$, are independent with probability

$$p_{xy} = \exp\left(-|x-y|^{\gamma}\right).$$

Problem: Does $\mathbb{P}^b_{N,\gamma}$ converge when $N \to \infty$?

Convergence: In the sense of Benjamini-Schramm...stronger version.

Convergence

- $\mathcal{G}_{\bullet} = \{(g, o) : g \in \mathcal{G}, o \text{ is a vertex of } g\}.$
- Topology: Given R > 0, $(g, o) \in \mathcal{G}_{\bullet}$,

$$B_{(g,o)}(R) = ((V_B, E_B), o) \in \mathcal{G}_{\bullet},$$

$$V_B = \{x \in V : d_g(o, x) \le R\},$$

$$E_B = \{\{x, y\} \in E : d_g(o, x) \le R \text{ and } d_g(o, y) \le R\}.$$

• Isomorphism: For a fixed $o, o' \in \mathbb{Z}$, define $\varphi_{o,o'} : \mathbb{Z} \to \mathbb{Z}$

$$\varphi_{o,o'}(x) = x - o + o'.$$

• Convergence of graphs: $(g_n, o_n) \rightarrow (g, o)$ if

$$\forall R>0, \exists n_0\geq 1, \forall n\geq n_0, \ \varphi_{o,o'}(B_{(g_n,o_n)}(R))=B_{(g,o)}(R).$$

Main Result

• Convergence in distribution: $\mu_n \to \mu$ if $\forall R > 0, \forall (g, o) \in \mathcal{G}_{\bullet}$,

$$\lim_{n\to\infty}\mu_n(B_{(G_n,\mathcal{O}_n)}(R)\simeq B_{(g,o)}(R))=\mu(B_{(G,\mathcal{O})}\simeq B_{(g,o)}(R)).$$

Theorem (Endo, Valesin - 2017)

Assume that either of the following conditions hold:

$$[\gamma \in (0,1), \ b \in (-\infty,1)], \ [\gamma = 1, \ b \in (-\infty,1) \setminus \mathcal{E}],$$
$$[\gamma > 1, \ b \in (-\infty,0)].$$

Let \mathcal{U}_N be the uniform measure on $\{1, \ldots, N\}$. Then

$$\mathbb{P}^b_{N,\gamma} \otimes \mathcal{U}_N \to \mathbb{P}_{\gamma} \otimes \delta_{\{0\}}.$$

Heuristic

Existence of a graph $g^* = g^*(N, \gamma, \alpha)$ with $\mathcal{H}_p(g^*)$ close to N^{α} .

$$\mathbb{P}_{N,\gamma}(\mathcal{H}_p(\mathit{G}_N) \leq \mathit{N}^\alpha) \geq \mathbb{P}_{N,\gamma}(\mathit{g}^\star \text{ is a subgraph of } \mathit{G}_N).$$

Main tools for the proof

Under conditions on γ, b , it is enough to show $\forall \varepsilon > 0, \forall (g, o) \in \mathcal{G}_{\bullet}$,

$$\mathbb{P}^b_{N,\gamma}\left(\left|\frac{\#\{i\in[N]:B_{(G_N,i)}(k)\simeq(g,o)\}}{N}-\mu_\gamma(k,(g,o))\right|>\varepsilon\right)\xrightarrow{N\to\infty}0.$$

Lemma

- Under conditions on γ , b: If E_N are events with $\mathbb{P}_{N,\gamma}(E_N) < \exp\{-\beta N\}$ for some $\beta > 0$ and N large, then $\mathbb{P}^b_{N,\gamma}(E_N) \xrightarrow{N \to \infty} 0$.
- 2 Assume $\gamma=1$ and $b\in[0,1)\backslash\mathcal{E}$. Then,
 - 2a. there exists C > 0 such that, if E_N are events with $\mathbb{P}_{N,1}(E_N) < \exp\{-CN\}$ for all N, then $\mathbb{P}_{N,1}^b(E_N) \xrightarrow{N \to \infty} 0$;
 - 2b. if E_N are events such that $\mathbb{P}_{N,1}(E_N) < \exp\{-cN\}$ for some c > 0, and each E_N only depends on $\{e : |e| \le L\}$ for a fixed L, then $\mathbb{P}_{N,1}^b(E_N) \xrightarrow{N \to \infty} 0$.

Quasi-independent random variables

We need a concentration result for sums of bounded random variables with finite-range dependence.

Lemma (Janson - Random Struct., '04)

Let Y_1, \ldots, Y_n be random variables such that, for some m, L > 0 and for each i, $0 \le Y_i \le m$ and Y_i is independent of $\{Y_j : |j-i| > L\}$. Then, letting $X = \sum_{i=1}^n Y_i$, we have

$$\mathbb{P}\left(|X - \mathbb{E}(X)| > t\right) \leq 2\exp\left\{-\frac{2t^2}{(2L+1)nm^2}\right\}.$$

References

- Benjamini, I., Schramm, O.: Recurrence of distributional limits of finite planar graphs. Electron. J. Probab. 6 (23), 13 pp. (2001).
- Endo, E.O., Valesin., D.: Local limits of spatial Gibbs random graphs. arXiv:1712.03841. (2017).
- Janson, S.: Large deviations for sums of partly dependent random variables. Random Struct. Alg., 24: 234–248. (2004).
- Mourrat, J.-C., Valesin. D.: Spatial Gibbs random graphs. *Ann. Appl. Probab.* 28, (2), 751–789. (2018).