Critical values in an anisotropic percolation model

Hao Xue

 $\label{eq:EPF-Lausanne} {\mbox{(Based on joint work with T. Mountford and M.E. Vares)}$

23rd EBP - July 2019

Overview

Basic model on \mathbb{Z}^{1+1}

Supercritical/ higher dimensions \mathbb{Z}^{d+1} (on going)

Related works

A model investigated by Fontes, Marchetti, Merola, Presutti, Vares: ± 1 spins $\sigma(x, i), x \in \mathbb{Z}, i \in \mathbb{Z}$ s.t.

Related works

A model investigated by Fontes, Marchetti, Merola, Presutti, Vares: ± 1 spins $\sigma(x, i), x \in \mathbb{Z}, i \in \mathbb{Z}$ s.t.

Horizontal interaction with strength γ and range 1/γ:
 On *i*-th horizontal level, it follows a Kac potential

$$-\frac{1}{2}J_{\gamma}(x,y)\sigma(x,i)\sigma(y,i), \sum_{y\neq x}J_{\gamma}(x,y)=1,$$

where $J_{\gamma} = c_{\gamma}\gamma J(\gamma(x-y))$ and $J(r), r \in \mathbb{R}$ is smooth and symmetric with support in $[-1, 1], J(0) > 0, \int J(r)dr = 1, c_{\gamma}$ is the normalization constant that tends to 1 as $\gamma \to 0$.

Related works

A model investigated by Fontes, Marchetti, Merola, Presutti, Vares: ± 1 spins $\sigma(x, i), x \in \mathbb{Z}, i \in \mathbb{Z}$ s.t.

Horizontal interaction with strength γ and range 1/γ:
 On *i*-th horizontal level, it follows a Kac potential

$$-\frac{1}{2}J_{\gamma}(x,y)\sigma(x,i)\sigma(y,i), \sum_{y\neq x}J_{\gamma}(x,y)=1,$$

where $J_{\gamma} = c_{\gamma}\gamma J(\gamma(x-y))$ and $J(r), r \in \mathbb{R}$ is smooth and symmetric with support in $[-1, 1], J(0) > 0, \int J(r)dr = 1, c_{\gamma}$ is the normalization constant that tends to 1 as $\gamma \to 0$.

• Vertical interaction between nearest neighbours with strength $\epsilon(\gamma)$.

$$-\epsilon\sigma(x,i)\sigma(x,i+1).$$

Related works (cont'd)

Question: How small ϵ is to still observe a phase transition for the anisotropic Ising model (for all γ small)?

Related works (cont'd)

Question: How small ϵ is to still observe a phase transition for the anisotropic Ising model (for all γ small)?

Conjecture

 $\epsilon(\gamma) = \kappa \gamma^{2/3}.$

Related works (cont'd)

Question: How small ϵ is to still observe a phase transition for the anisotropic Ising model (for all γ small)?

Conjecture

 $\epsilon(\gamma) = \kappa \gamma^{2/3}.$

Ising \Rightarrow FK percolation with q = 2:

$$p(\langle v_1, v_2 \rangle) = 1 - e^{-J_{\gamma}(x,y)} \mathbf{1}_{\langle v_1, v_2 \rangle \in E_h} - e^{-2\epsilon(\gamma)} \mathbf{1}_{\langle v_1, v_2 \rangle \in E_v}.$$

FK measure:

$$\mathbb{P}(\omega) = \frac{1}{Z(G, p, q)} p^{|\omega|} (1-p)^{|E \setminus \omega|} q^{k(\omega)}.$$

Graph $\mathbb{Z}^2 = (V, E)$, $V = \{(x, i) : x \in \mathbb{Z}, i \in \mathbb{Z}\}, E = E_h \cup E_v$, s.t.

Graph $\mathbb{Z}^2 = (V, E)$, $V = \{(x, i) : x \in \mathbb{Z}, i \in \mathbb{Z}\}$, $E = E_h \cup E_v$, s.t. • Horizontal edges

 $E_h = \{e = \langle v_1, v_2 \rangle : 1 \le |x_1 - x_2| \le N, i_1 = i_2\}.$

Open probability $\frac{\lambda}{2N}$; critical case: $\lambda = 1$.

Graph $\mathbb{Z}^2 = (V, E)$, $V = \{(x, i) : x \in \mathbb{Z}, i \in \mathbb{Z}\}$, $E = E_h \cup E_v$, s.t. • Horizontal edges

$$E_h = \{e = \langle v_1, v_2 \rangle : 1 \le |x_1 - x_2| \le N, i_1 = i_2\}.$$

Open probability $\frac{\lambda}{2N}$; critical case: $\lambda = 1$.

Vertical edges

$$E_v = \{e = \langle v_1, v_2 \rangle : x_1 = x_2, |i_1 - i_2| = 1\}.$$

Open probability $\epsilon(N) = \kappa N^{-b}$.

Graph $\mathbb{Z}^2 = (V, E)$, $V = \{(x, i) : x \in \mathbb{Z}, i \in \mathbb{Z}\}$, $E = E_h \cup E_v$, s.t. • Horizontal edges

$$E_h = \{e = \langle v_1, v_2 \rangle : 1 \le |x_1 - x_2| \le N, i_1 = i_2\}.$$

Open probability $\frac{\lambda}{2N}$; critical case: $\lambda = 1$.

Vertical edges

$$E_v = \{e = \langle v_1, v_2 \rangle : x_1 = x_2, |i_1 - i_2| = 1\}.$$

Open probability $\epsilon(N) = \kappa N^{-b}$.

▶ Initial open sites at layer 0: $2N^{2\alpha}$ on $\{-N^{1+\alpha}, \cdots, 0, \cdots, N^{1+\alpha}\}$ with distance $N^{1-\alpha}$

Picutre

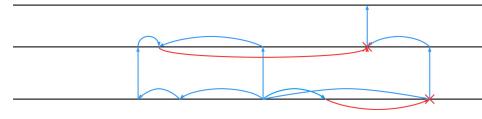


Figure: Anisotropic percolation on \mathbb{Z}^2

Rescale the horizontal space by ${\it N}^{1+\alpha}$ and its horizontal time step by ${\it N}^{2\alpha}$

Rescale the horizontal space by $N^{1+\alpha}$ and its horizontal time step by $N^{2\alpha}$ $\blacktriangleright \hat{\xi}_n(\cdot) : \mathbb{Z}/N^{1+\alpha} \to \{0,1\}.$

►

Rescale the horizontal space by $N^{1+\alpha}$ and its horizontal time step by $N^{2\alpha}$ $\hat{\xi}_n(\cdot): \mathbb{Z}/N^{1+\alpha} \to \{0,1\}.$

$$\hat{\xi}_{k+1}(x) = \begin{cases} 1 & \text{if } \sum_{j \le k} \hat{\xi}_j(x) = 0 \text{ and } \sum_{w=1}^{N_k(x)} \eta_{k+1}^w \ge 1 \\ 0 & \text{otherwise}, \end{cases}$$

where $N_k(x) = \sum_{y \sim x} \hat{\xi}_k(y), \eta_{k+1}^w \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(1/2N).$

►

Rescale the horizontal space by $N^{1+\alpha}$ and its horizontal time step by $N^{2\alpha}$ $\blacktriangleright \hat{\xi}_n(\cdot) : \mathbb{Z}/N^{1+\alpha} \to \{0,1\}.$

$$\hat{\xi}_{k+1}(x) = \begin{cases} 1 & \text{if } \sum_{j \le k} \hat{\xi}_j(x) = 0 \text{ and } \sum_{w=1}^{N_k(x)} \eta_{k+1}^w \ge 1 \\ 0 & \text{otherwise}, \end{cases}$$

where $N_k(x) = \sum_{y \sim x} \hat{\xi}_k(y), \eta_{k+1}^w \overset{\text{i.i.d.}}{\sim} \text{Bernoulli}(1/2N).$

• Approximation of density $(A\hat{\xi})(x) = \frac{1}{2N^{\alpha}} \sum_{y \sim x} \hat{\xi}(y).$

Rescale the horizontal space by $N^{1+\alpha}$ and its horizontal time step by $N^{2\alpha}$ $\hat{\xi}_n(\cdot): \mathbb{Z}/N^{1+\alpha} \to \{0,1\}.$

$$\hat{\xi}_{k+1}(x) = \begin{cases} 1 & \text{if } \sum_{j \le k} \hat{\xi}_j(x) = 0 \text{ and } \sum_{w=1}^{N_k(x)} \eta_{k+1}^w \ge 1\\ 0 & \text{otherwise}, \end{cases}$$

where $N_k(x) = \sum_{y \sim x} \hat{\xi}_k(y), \eta_{k+1}^w \overset{\text{i.i.d.}}{\sim} \text{Bernoulli}(1/2N).$

Approximation of density (A\$\u03c6\$)(x) = \frac{1}{2N^{\alpha}} \sum_{y \sigma x} \u03c6(y).
\$\u03c6 \u03c6 k_{k+1}(x) = \u03c6 \u03c6 k_k(x) + \u03c6 Laplacian + martingale - \frac{1}{2N} \u03c6 \u03c6 k_k(y) \u03c6 \u03c6 k_j(x) + \

converges when
$$\alpha{=}1/5$$

• $\hat{\xi}_n(\cdot): \mathbb{Z}/N^{1+\alpha} \to \{0,1\}, (A\hat{\xi})(x) = \frac{1}{2N^{\alpha}} \sum_{y \sim x} \hat{\xi}(y)$

- $\blacktriangleright \hat{\xi}_n(\cdot): \mathbb{Z}/N^{1+\alpha} \to \{0,1\}, \ (A\hat{\xi})(x) = \frac{1}{2N^{\alpha}} \sum_{y \sim x} \hat{\xi}(y)$
- ▶ Initially, $A(\hat{\xi}_0) = \mathbbm{1}_{[-1,1]}$, $N^{\alpha-1}$ on each site and total number is $N^{2\alpha}$

- $\blacktriangleright \hat{\xi}_n(\cdot): \mathbb{Z}/N^{1+\alpha} \to \{0,1\}, \ (A\hat{\xi})(x) = \frac{1}{2N^{\alpha}} \sum_{y \sim x} \hat{\xi}(y)$
- ► Initially, $A(\hat{\xi}_0) = \mathbb{1}_{[-1,1]}$, $N^{\alpha-1}$ on each site and total number is $N^{2\alpha}$
- After $N^{2\alpha}$ steps, dying chance is $N^{3\alpha-1}$

- $\blacktriangleright \hat{\xi}_n(\cdot): \mathbb{Z}/N^{1+\alpha} \to \{0,1\}, \ (A\hat{\xi})(x) = \frac{1}{2N^{\alpha}} \sum_{y \sim x} \hat{\xi}(y)$
- ▶ Initially, $A(\hat{\xi}_0) = 1_{[-1,1]}$, $N^{\alpha-1}$ on each site and total number is $N^{2\alpha}$
- After $N^{2\alpha}$ steps, dying chance is $N^{3\alpha-1}$
- ▶ Total attrition is $N^{5\alpha-1}$

Main result

 $\blacktriangleright C^i$: cluster at layer *i*

Main result

- $\blacktriangleright C^i$: cluster at layer *i*
- $\blacktriangleright |\mathcal{C}^i| \approx N^{2\alpha}$

Main result

- C^i : cluster at layer *i*
- $\blacktriangleright |\mathcal{C}^i| \approx N^{2\alpha}$

Theorem 1 (Mountford, Vares, X.).

The critical value is b = 2/5 ($\epsilon(N) = \kappa N^{-b}$): there exist positive constants C_1 and C_2 such that for $\kappa < C_1$, there is no percolation and for $\kappa > C_2$, the percolation appears.

Supercritical/ higher dimensions cases (on going)

When λ > 1, d = 1 (horizontal open probability is λ/2N): the critical vertical interaction is ε(N) = e^{-κN}.

Supercritical/ higher dimensions cases (on going)

- When λ > 1, d = 1 (horizontal open probability is λ/2N): the critical vertical interaction is ε(N) = e^{-κN}.
- When $\lambda > 1, d > 1$, there always exists a percolation.
 - What is the probability of a large but finite size cluster?

Thanks!