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Introduction

Studies questions about old or extinct networks.

We want to find a source of a rumor/disease.

This problem was popularized by Shah-Zamah [6].
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Setup

S` is a tree with V (S`) = {1, . . . , `}.

A random tree Tn = Tn(S`) with V (Tn) = {1, . . . , n} is a uniform
attachment tree with seed S` if it is generated as follows:

I T` = S` ;

I Ti is obtained by joining vertex i to a vertex of Ti−1 chosen
uniformly at random, independently of the past.
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Influence of the seed

Bubeck, (Eldan), Mossel, and Rácz studied the influence of the
seed in the growth of the random tree, first in preferential
attachment [3] and after in uniform attachment [2].

They did it by analysing

δ(S1,S2) = lim
n→∞

TV (Tn(S1),Tn(S2))

Is δ a metric?

Curien, Duquesne, Kortchemski and Manolescu: YES. [4]
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The problem

Given Tn(S`) e want to find

I either a big set H1(Tn, ε) such that

P(H1(Tn, ε) ⊂ S`) ≥ 1− ε;

I or a small a set H2(Tn, ε) such that

P(H2(Tn, ε) ⊃ S`) ≥ 1− ε.
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Finding Adam

Bubeck, Devroye, and Lugosi [1] considered the case ` = 1 (in UA
and PA).

Jog and Loh [5] considered the same problem in non-linear
preferential attachment.

We considered the cases

I Path P`.

I Star E`.

I UART T`.
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Theorem 1: S` = P`

For ` ≥ max

{
2e2

γ
log

1

ε
,

2e2

γ
log(4e2)

}
we have the following:

Given Tn(P`), n >> 1 we can find a set
Hn = Hn(Tn, ε) ⊂ {1, . . . , n} with |Hn| ≥ (1− γ)` such that

P {Hn ⊂ P`} ≥ 1− ε .
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Theorem 2: S` = E`

For ` ≥ max

{
C ,

8

γ

}
log

1

ε
we have the following:

Given Tn(E`), n >> 1 we can find a set
Hn = Hn(Tn, ε) ⊂ {1, . . . , n} with |Hn| ≤ (1 + γ)` such that

P {Hn ⊃ E`} ≥ 1− ε .



Theorem 3: S` = T`

There exist c1 and c2 such that the following holds. Let

` ≥ c1 log2
1

ε
.

Given Tn(T`), n >> 1 we can find a set
Hn = Hn(Tn, ε) ⊂ {1, . . . , n} with |Hn| ≥ `/[c2 log(`/ε)] such that

P {Hn ⊂ T`} ≥ 1− ε .



Theorem 4

Theorem
Let ε ∈ (0, e−e

2
). Suppose that Tn is a uniform attachment tree

with seed S` = P` or S` = E` for ` ≤ log(1/ε)
log log(1/ε) . Then, for all

n ≥ 2`, any seed-finding algorithm that outputs a vertex set Hn of
size ` has

P
{
|Hn ∩ S`| ≤

`

2

}
≥ ε .



How can we prove it?

The main idea is to prove that old vertices are more central than
the new vertices (in some sense).

The set Hn will be the set of the most central vertices in Tn.

Let us define what means be more central.
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Rooted tree and Induced subtree

A rooted tree (T , v) is the tree T with a distinguished vertex
v ∈ V (T ).

The subtree induced by u (T , v)u↓ is the subtree of (T , v) which
grows from u in the opposite direction of v .
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Centrality: Definition
Given a tree T , the anti-centrality of a vertex v ∈ V (T ) is defined
by

ψ(v) = max
u∈N(v)

|(T , v)u↓| .
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Centrality
Given v , we denote v ′ to be some vertex in N(v) such that

ψ(v) =
∣∣(T , v)v ′↓

∣∣ .



Comparing Centrality

Case 1: When v is between v ′ and j we have ψ(v) ≤ ψ(j)
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Sketch of the proof: Case S` = P`

We will prove that
old central vertices are more central than new vertices.

More precisely

P
{

max
`γ/2≤j≤`(1−γ/2)

ψ(j)< min
`<i≤n

ψ(i)

}
≥ 1− ε .

Let us prove that the complement has small probability.
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Sketch of the proof

By Union Bound we have

P
{

min
`<i≤n

ψ(i) ≤ max
`γ/2≤j≤`(1−γ/2)

ψ(j)

}

≤
(1−γ/2)`∑
j=γ`/2

P
{

min
`<i≤n

ψ(i) ≤ ψ(j)

}

≤
(1−γ/2)`∑
j=γ`/2

∑̀
k=1

P
{
∃v ∈ Ck\{k} : ψ(v) ≤ ψ(j)

}
.



First case: (v ′, v , j)



Second case: (v , v ′, j)

The value of ` arise from a optimization of the bounds.
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