Variable Length Markov Chain with Exogenous Covariates

Adriano Zanin Zambom Cal. State University Northridge

joint work with Seonjin Kim (Miami University Ohio) Nancy Lopes Garcia (UNICAMP)

Adriano Zanin Zambom EBP 23 - São Carlos - SP - Brazil

ヘロト 人間 ト ヘヨト ヘヨト

æ

- VLMC Variable Length Markov Chain
- Buhlmann and Wyner (1999)

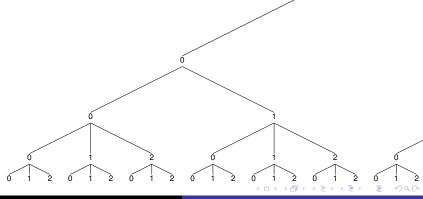
Adriano Zanin Zambom EBP 23 - São Carlos - SP - Brazil

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

- VLMC Variable Length Markov Chain
- Buhlmann and Wyner (1999)
- Full Markov Chain with finite order: $P(X_n = x_n) = P(X_{n-1} = x_{n-1}, \dots, X_{n-k} = x_{n-k})$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

- VLMC Variable Length Markov Chain
- Buhlmann and Wyner (1999)
- Full Markov Chain with finite order: $P(X_n = x_n) = P(X_{n-1} = x_{n-1}, \dots, X_{n-k} = x_{n-k})$



У

• Curse of Dimensionality!

Adriano Zanin Zambom EBP 23 - São Carlos - SP - Brazil

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

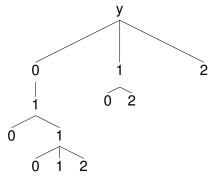
• Curse of Dimensionality!

• Rissanen (1983) - context algorithm - Computer Science

Adriano Zanin Zambom EBP 23 - São Carlos - SP - Brazil

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Curse of Dimensionality!
- Rissanen (1983) context algorithm Computer Science
- Lump irrelevant states together



 Buhlmann and Wyner (1999): Probability and Statistics point of view

Definition

(Buhlmann & Wyner, 1999) Let $(X_t)_{t\in\mathbb{Z}}$ be a stationary process with values $X_t \in \mathcal{X}$, $|\mathcal{X}| < \infty$. Denote by $c : \mathcal{X}^{\infty} \to \mathcal{X}^{\infty}$ a (projection) function which maps

$$c: x_{-\infty}^{0} \to x_{-\ell+1}^{0}, \text{ where } \ell \text{ is defined by} \\ \ell = \min\{k: P(X_{1} = x_{1} | X_{-\infty}^{0} = x_{-\infty}^{0}) = P(X_{1} = x_{1} | X_{-k+1}^{0} = X_{-k+1}^{0}) \\ \text{for all } x_{1} \in \mathcal{X}\}$$

Then, $c(\cdot)$ is called the context function for any $t \in \mathbb{Z}$, and $c(x_{-\infty}^{t-1})$ is called the context for x_t .

ヘロト ヘアト ヘビト ヘビト

• Consider the following situation

Adriano Zanin Zambom EBP 23 - São Carlos - SP - Brazil

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

- Consider the following situation
- States: $Y = \{0, 1\}$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

- Consider the following situation
- States: $Y = \{0, 1\}$
- At each step/transition *t* we observe a set of covariates $\mathbf{X}_t = (X_{t1}, \dots, X_{td})$ independently

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- Consider the following situation
- States: $Y = \{0, 1\}$
- At each step/transition *t* we observe a set of covariates $\mathbf{X}_t = (X_{t1}, \dots, X_{td})$ independently
- Assume that for a given context, the observed covariate values are relevant to the transition probability

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- Consider the following situation
- States: $Y = \{0, 1\}$
- At each step/transition *t* we observe a set of covariates $\mathbf{X}_t = (X_{t1}, \dots, X_{td})$ independently
- Assume that for a given context, the observed covariate values are relevant to the transition probability
- This can be modeled in the following way

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Definition

Let $(Y_t)_{t \in \mathbb{Z}}$ be a stationary process with values $Y_t \in \mathcal{Y}$ and $\mathbf{X}_t \in \mathcal{X} \subseteq \mathbb{R}^d$ a *d*-dimensional vector of exogenous covariates. Denote by $c : \mathcal{Y}^{\infty} \to \mathcal{Y}^{\infty}$ a (projection) function which maps

$$\begin{split} c : y_{-\infty}^{0} &\to y_{-\ell+1}^{0}, \text{ where } \ell \text{ is defined by} \\ \ell &= \min\{k : P(Y_{1} = 1 | Y_{-\infty}^{0} = y_{-\infty}^{0}, \mathbf{X}_{-\infty}^{0} = \mathbf{x}_{-\infty}^{0}) \\ &= P_{\theta}(Y_{1} = 1 | Y_{-k+1}^{0} = y_{-k+1}^{0}, \mathbf{X}_{-h}^{0} = \mathbf{x}_{-h+1}^{0}) \text{ for all } \mathbf{x}_{-\infty}^{0}, \text{ and } k \geq h\} \end{split}$$

where, letting $u := y_{-\ell+1}^0$

$$P_{\boldsymbol{\theta}}(Y_1 = 1 | Y_{-\ell+1}^0 = y_{-\ell+1}^0, \mathbf{X}_{-h+1}^0 = \mathbf{x}_{-h+1}^0) = \frac{\exp(\alpha^{u} + \mathbf{x}_{-h+1}^0 \beta^{uT})}{1 + \exp(\alpha^{u} + \mathbf{x}_{-h+1}^0 \beta^{uT})},$$
(1)

for $h \leq \ell$ and $\theta := \theta^u = (\alpha^u, \beta^u) = (\alpha^u, \beta^u_0, \dots, \beta^u_{(-h+1)})$, defines the vector of coefficients associated with the context (past states) $u = y^u_{-\ell+1}$ for transitioning into state 1, and $\beta^u_t = (\beta^u_{t1}, \dots, \beta^u_{td})$ is the vector of coefficients corresponding to the d exogenous covariates at time $t = 0, \dots, -h+1$. Then, $c(\cdot)$ is called the beta-context function for any $t \in \mathbb{Z}$, and $c(y^{t-1}_{-\infty})$ is called the beta-context for y_t with associated parameter vector θ^u .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Definition

Let $c(\cdot)$ be a beta-context function of a stationary beta-context model of order k. The beta-context tree τ is defined as

$$\tau = \tau_{c} = \{ u : u = c(y_{-k+1}^{0}), y_{-k+1}^{0} \in \mathcal{Y}^{k} \}$$

with an associated parameter tree

$$\tau_{\theta} = \{ (\boldsymbol{u}, \boldsymbol{\theta}^{\boldsymbol{u}}) : \boldsymbol{u} \in \tau \}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

• The Beta-Context Algorithm

Start with a maximal beta-context tree

$$\tau^{(0)} = \tau_{\max} = \{ u = y_{-k+1}^0 : N(y_{-k+1}^0) \ge s(1 + dk) \}$$

1 + dk = number param. to be estimated in context y⁰_{-k+1}
s = tuning parameter

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

• The Beta-Context Algorithm

Start with a maximal beta-context tree

$$\tau^{(0)} = \tau_{\max} = \{ u = y_{-k+1}^0 : N(y_{-k+1}^0) \ge s(1 + dk) \}$$

2 For each context $u \in \tau^{(0)}$ of length *r*, test

$$H_0^u:\beta_{-r+1}^u=0$$

with the LRT

$$-2\Big[\log L\left(\tilde{\tau}^{u}_{\theta}\Big|y_{1}^{n}, \mathbf{x}_{1}^{n}\right) - \log L\left(\hat{\tau}^{(0)}_{\theta}\Big|y_{1}^{n}, \mathbf{x}_{1}^{n}\right)\Big]$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The Beta-Context Algorithm

Start with a maximal beta-context tree

$$\tau^{(0)} = \tau_{\max} = \{ u = y_{-k+1}^0 : N(y_{-k+1}^0) \ge s(1 + dk) \}$$

2 For each context $u \in \tau^{(0)}$ of length *r*, test

$$H_0^u:\beta_{-r+1}^u=0$$

with the LRT

$$-2\Big[\log L\left(\tilde{\tau}^{\textit{u}}_{\theta}\Big|\boldsymbol{y}^{\textit{n}}_{1},\boldsymbol{x}^{\textit{n}}_{1}\right)-\log L\left(\hat{\tau}^{(0)}_{\theta}\Big|\boldsymbol{y}^{\textit{n}}_{1},\boldsymbol{x}^{\textit{n}}_{1}\right)\Big]$$

• If not rejected at level γ_n : prune beta coef. only

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 ■ ∽ Q ()~

With respect to the tests performed in Step 2:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- With respect to the tests performed in Step 2:
 - If neither H₀^{u₁} nor H₀^{u₂}, for u₁ and u₂ siblings in τ₍₀₎, was rejected then test whether these siblings' final nodes can be dropped

ヘロン 人間 とくほど くほとう

3

With respect to the tests performed in Step 2:

- If neither $H_0^{u_1}$ nor $H_0^{u_2}$, for u_1 and u_2 siblings in $\tau_{(0)}$, was rejected then test whether these siblings' final nodes can be dropped
- If at least one of $H_0^{u_1}$ and $H_0^{u_2}$, for u_1 and u_2 siblings in $\tau^{(0)}$, was rejected, both u_1 and u_2 remain in the tree

◆□> ◆◎> ◆注> ◆注>

With respect to the tests performed in Step 2:

- If neither H₀^{u₁} nor H₀^{u₂}, for u₁ and u₂ siblings in τ₍₀₎, was rejected then test whether these siblings' final nodes can be dropped
- If at least one of $H_0^{u_1}$ and $H_0^{u_2}$, for u_1 and u_2 siblings in $\tau^{(0)}$, was rejected, both u_1 and u_2 remain in the tree
- Bepeat Steps 2 and 3 with the updated trees $\tau^{(1)}$ and $\tau^{(1)}_{\hat{\theta}}$ for contexts of length r 1, r 2, ..., 1.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

With respect to the tests performed in Step 2:

- If neither H₀^{u₁} nor H₀^{u₂}, for u₁ and u₂ siblings in τ₍₀₎, was rejected then test whether these siblings' final nodes can be dropped
- 2 If at least one of $H_0^{u_1}$ and $H_0^{u_2}$, for u_1 and u_2 siblings in $\tau^{(0)}$, was rejected, both u_1 and u_2 remain in the tree
- Separate Steps 2 and 3 with the updated trees $\tau^{(1)}$ and $\tau^{(1)}_{\hat{\theta}}$ for contexts of length r 1, r 2, ..., 1.
- Result: τ̂ with associated parameter tree τ̂_θ and corresponding beta-context function ĉ(·).

イロト 不得 とくほ とくほ とうほ

Adriano Zanin Zambom EBP 23 - São Carlos - SP - Brazil

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Assumptions: C1: $\gamma_n \rightarrow 0$ such that $n\gamma_n = o(1)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Assumptions: C1: $\gamma_n \rightarrow 0$ such that $n\gamma_n = o(1)$. C2: $\gamma_n \rightarrow 0$ such that $(1/n) \log(1/\gamma_n) = o(1)$.

Assumptions: C1: $\gamma_n \rightarrow 0$ such that $n\gamma_n = o(1)$. C2: $\gamma_n \rightarrow 0$ such that $(1/n) \log(1/\gamma_n) = o(1)$. C3: The order of the initial maximal tree τ_{max} is r = O(log(n)).

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Assumptions: C1: $\gamma_n \rightarrow 0$ such that $n\gamma_n = o(1)$. C2: $\gamma_n \rightarrow 0$ such that $(1/n) \log(1/\gamma_n) = o(1)$. C3: The order of the initial maximal tree τ_{max} is r = O(log(n)).

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Theorem

Assume that the beta-context tree τ has finite order k and the contexts $u \in \tau$ are correctly identified, that is, $\hat{\tau} = \tau$, and that its associated parameter tree $\hat{\tau}_{\theta}$ is pruned sequentially backwards. Then, under conditions C1 and C2, the estimated associated parameter tree is consistent in the sense that

$$\lim_{n\to\infty} P[\hat{\theta}^u = \theta^u, \forall u \in \tau] = 1.$$

Theorem

Assume that the beta-context tree τ has finite order k and the contexts $u \in \tau$ are correctly identified, that is, $\hat{\tau} = \tau$, and that its associated parameter tree $\hat{\tau}_{\theta}$ is pruned sequentially backwards. Then, under conditions C1 and C2, the estimated associated parameter tree is consistent in the sense that

$$\lim_{h\to\infty} P[\hat{\theta}^u = \theta^u, \forall u \in \tau] = 1.$$

The proof of this theorem is based on showing that the probability of over-fitting and under-fitting tend to 0.

ヘロン ヘアン ヘビン ヘビン

Theorem

Assume that the beta-context tree τ has finite order k and the contexts $u \in \tau$ are estimated using the beta-context algorithm. Then, under conditions C1 and C2, the estimated context tree is consistent in the sense that

$$\lim_{\tau\to\infty} P[\hat{\tau}=\tau]=1.$$

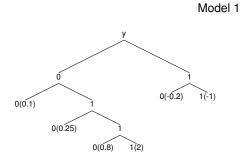
3

Simulations

Adriano Zanin Zambom EBP 23 - São Carlos - SP - Brazil

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - 釣A@

Simulations



$$\begin{array}{rcl} \beta^{00} & = & (2,0)' \\ \beta^{010} & = & (-1,1,0)' \\ \beta^{0111} & = & (1.5,2,0,0)' \\ \beta^{0110} & = & (4,3,2,1)' \\ \beta^{10} & = & (0,0)' \\ \beta^{11} & = & (0,0)' \end{array}$$

ヘロト 人間 とくほとくほとう

Adriano Zanin Zambom EBP 23 - São Carlos - SP - Brazil

Method	BIC	AIC	logLik	No. Params $\hat{\alpha}^{u}$	No. Params $\hat{\beta}^{u}$	
beta-VLMC	1128.8	1093.1	-539.3	5.39	7.28	
VLMC	1345.8	1327.5	-660.0	3.72	-	
	order $\hat{\tau}$	order-Covar.	No. Missing $\hat{\tau}$	No. Extra $\hat{\tau}$	Identical τ	Identical τ_{θ}
beta-VLMC	3.90	3.87	1.28	0.07	0.37	0.04
VLMC	2.30	-	4.63	0.08	0.01	-

Table: Simulation results for Model 1 with n = 1000 transitions.

Adriano Zanin Zambom EBP 23 - São Carlos - SP - Brazil

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Thank You

Adriano Zanin Zambom EBP 23 - São Carlos - SP - Brazil