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VLMC

VLMC - Variable Length Markov Chain
Buhlmann and Wyner (1999)

Full Markov Chain with finite order:
P(Xn = xn) = P(Xn−1 = xn−1, . . . ,Xn−k = xn−k )
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VLMC

Curse of Dimensionality!

Rissanen (1983) - context algorithm - Computer Science

Lump irrelevant states together
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VLMC

Buhlmann and Wyner (1999): Probability and Statistics
point of view

Definition
(Buhlmann & Wyner, 1999) Let (Xt)t∈Z be a stationary process
with values Xt ∈ X , |X | <∞. Denote by c : X∞ → X∞ a
(projection) function which maps

c : x0
−∞ → x0

−`+1, where ` is defined by

` = min{k : P(X1 = x1|X 0
−∞ = x0

−∞) = P(X1 = x1|X 0
−k+1 = X 0

−k+1)

for all x1 ∈ X}

Then, c(·) is called the context function for any t ∈ Z, and
c(x t−1
−∞) is called the context for xt .
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beta-VLMC

Consider the following situation

States: Y = {0,1}

At each step/transition t we observe a set of covariates
Xt = (Xt1, . . . ,Xtd) independently

Assume that for a given context, the observed covariate
values are relevant to the transition probability

This can be modeled in the following way
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beta-VLMC

Definition

Let (Yt )t∈Z be a stationary process with values Yt ∈ Y and Xt ∈ X ⊆ Rd a d-dimensional vector of exogenous
covariates. Denote by c : Y∞ → Y∞ a (projection) function which maps

c : y0
−∞ → y0

−`+1, where ` is defined by

` = min{k : P(Y1 = 1|Y 0
−∞ = y0

−∞, X0
−∞ = x0

−∞)

= Pθ(Y1 = 1|Y 0
−k+1 = y0

−k+1, X0
−h = x0

−h+1) for all x0
−∞, and k ≥ h}

where, letting u := y0
−`+1

Pθ(Y1 = 1|Y 0
−`+1 = y0

−`+1, X0
−h+1 = x0

−h+1) =
exp(αu + x0

−h+1β
u T )

1 + exp(αu + x0
−h+1β

u T )
, (1)

for h ≤ ` and θ := θu = (αu ,βu) =
(
αu ,βu

0 , . . . ,β
u
(−h+1)

)
, defines the vector of coefficients associated

with the context (past states) u = y0
−`+1 for transitioning into state 1, and βu

t = (βu
t1, . . . , β

u
td ) is the vector of

coefficients corresponding to the d exogenous covariates at time t = 0, . . . ,−h + 1. Then, c(·) is called the
beta-context function for any t ∈ Z, and c(y t−1

−∞) is called the beta-context for yt with associated parameter vector

θu .
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beta-VLMC

Definition
Let c(·) be a beta-context function of a stationary beta-context
model of order k. The beta-context tree τ is defined as

τ = τc = {u : u = c(y0
−k+1), y

0
−k+1 ∈ Y

k}

with an associated parameter tree

τθ = {(u,θu) : u ∈ τ}
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beta-VLMC

The Beta-Context Algorithm

1 Start with a maximal beta-context tree

τ (0) = τmax = {u = y0
−k+1 : N(y0

−k+1) ≥ s(1 + dk)}

1 + dk = number param. to be estimated in context y0
−k+1

s = tuning parameter

2 For each context u ∈ τ (0) of length r , test

Hu
0 : βu

−r+1 = 0

with the LRT

−2
[

log L
(
τ̃u
θ

∣∣∣yn
1 ,x

n
1

)
− log L

(
τ̂
(0)
θ

∣∣∣yn
1 ,x

n
1

) ]
If not rejected at level γn: prune beta coef. only
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beta-VLMC

3 With respect to the tests performed in Step 2:

1 If neither Hu1
0 nor Hu2

0 , for u1 and u2 siblings in τ(0), was
rejected then test whether these siblings’ final nodes can be
dropped

2 If at least one of Hu1
0 and Hu2

0 , for u1 and u2 siblings in τ (0),
was rejected, both u1 and u2 remain in the tree

4 Repeat Steps 2 and 3 with the updated trees τ (1) and τ (1)
θ̂

for
contexts of length r − 1, r − 2, . . . ,1.

Result: τ̂ with associated parameter tree τ̂θ and corresponding
beta-context function ĉ(·).
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beta-VLMC

Consistency of τ̂ and τ̂θ

Assumptions:
C1: γn → 0 such that nγn = o(1).
C2: γn → 0 such that (1/n) log(1/γn) = o(1).
C3: The order of the initial maximal tree τmax is r = O(log(n)).
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beta-VLMC

Theorem

Assume that the beta-context tree τ has finite order k and the
contexts u ∈ τ are correctly identified, that is, τ̂ = τ , and that its
associated parameter tree τ̂θ is pruned sequentially backwards.
Then, under conditions C1 and C2, the estimated associated
parameter tree is consistent in the sense that

lim
n→∞

P[θ̂
u
= θu,∀u ∈ τ ] = 1.

The proof of this theorem is based on showing that the
probability of over-fitting and under-fitting tend to 0.
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beta-VLMC

Theorem

Assume that the beta-context tree τ has finite order k and the
contexts u ∈ τ are estimated using the beta-context algorithm.
Then, under conditions C1 and C2, the estimated context tree
is consistent in the sense that

lim
n→∞

P[τ̂ = τ ] = 1.
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beta-VLMC

Simulations

Model 1

y

0

0(0.1) 1

0(0.25) 1

0(0.8) 1(2)

1

0(-0.2) 1(-1)

β00 = (2, 0)′

β010 = (−1, 1, 0)′

β0111 = (1.5, 2, 0, 0)′

β0110 = (4, 3, 2, 1)′

β10 = (0, 0)′

β11 = (0, 0)′
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beta-VLMC

Method BIC AIC logLik No. Params α̂u No. Params β̂
u

beta-VLMC 1128.8 1093.1 -539.3 5.39 7.28
VLMC 1345.8 1327.5 -660.0 3.72 -

order τ̂ order-Covar. No. Missing τ̂ No. Extra τ̂ Identical τ Identical τθ
beta-VLMC 3.90 3.87 1.28 0.07 0.37 0.04
VLMC 2.30 - 4.63 0.08 0.01 -

Table: Simulation results for Model 1 with n = 1000 transitions.
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Thank You
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