Infinite DLR Measures and Volume-Type Phase Transitions on Countable Markov Shifts with Eric O. Endo (NYU-Shanghai) and Elmer R. Beltrán (IME-USP)

Rodrigo Bissacot - (USP), Brazil

Partially supported by FAPESP and CNPq

XXIII Brazilian School of Probability ICMC - 2019

- 2 Thermodynamic Formalism
- 3 Infinite DLR Measures
- 4 New (?) Type of Phase Transition.

くほと くほと くほと

- Alphabet \mathbb{N} .

르

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

- Alphabet \mathbb{N} .
- An irreducible transition matrix A ($A(i, j) \in \{0, 1\}$).

æ

・ロト ・聞き ・ ほと ・ ほとう

- Alphabet \mathbb{N} .
- An irreducible transition matrix A ($A(i,j) \in \{0,1\}$).

$$\Sigma_{\mathcal{A}} = \{(x_0, x_1, \ldots) \in \mathbb{N}^{\mathbb{N}} : \mathcal{A}(x_i, x_{i+1}) = 1 \text{ for every } i\}.$$

æ

・ロト ・聞き ・ ほと ・ ほとう

- Alphabet \mathbb{N} .
- An irreducible transition matrix A ($A(i,j) \in \{0,1\}$).

$$\Sigma_A = \{(x_0, x_1, \ldots) \in \mathbb{N}^{\mathbb{N}} : A(x_i, x_{i+1}) = 1 \text{ for every } i\}.$$

- Countable Markov shifts Σ_A , in general, are not locally compact.

|田 | |田 | |田 |

Figure: The Renewal shift Σ_A

- ∢ 🗇 እ

- ∢ ∃ ▶

 $\sigma: \Sigma_A \to \Sigma_A$ defined by $\sigma(x_0, x_1, \ldots) = (x_1, x_2, \ldots)$. (shift map)

 $\sigma : \Sigma_A \to \Sigma_A$ defined by $\sigma(x_0, x_1, \ldots) = (x_1, x_2, \ldots)$. (shift map) $\phi : \Sigma_A \to \mathbb{R}$ measurable. (potential)

★週▶ ★周▶ ★周▶ → 唐

Thermodynamic Formalism

 $\sigma: \Sigma_A \to \Sigma_A \text{ defined by } \sigma(x_0, x_1, \ldots) = (x_1, x_2, \ldots). \text{ (shift map)}$ $\phi: \Sigma_A \to \mathbb{R} \text{ measurable. (potential)}$

$$\phi_n(x) := \sum_{i=0}^{n-1} \phi(\sigma^i x) \text{ for } n \ge 1.$$

米理ト 米原ト 米原ト 三国

$$\sigma : \Sigma_A \to \Sigma_A$$
 defined by $\sigma(x_0, x_1, \ldots) = (x_1, x_2, \ldots)$. (shift map)
 $\phi : \Sigma_A \to \mathbb{R}$ measurable. (potential)

$$\phi_n(x) := \sum_{i=0}^{n-1} \phi(\sigma^i x) \text{ for } n \ge 1.$$

For $n \ge 1$, the *n*-variation of ϕ is given by $\operatorname{var}_n(\phi) = \sup\{|\phi(x) - \phi(y)| : x_0 = y_0, ..., x_{n-1} = y_{n-1}\}$

 ϕ has summable variations when $\sum_{n\geq 2} \operatorname{var}_n(\phi) < \infty$.

米部 とくほと くほとう ほ

 $\sigma : \Sigma_A \to \Sigma_A$ defined by $\sigma(x_0, x_1, \ldots) = (x_1, x_2, \ldots)$. (shift map) $\phi : \Sigma_A \to \mathbb{R}$ measurable. (potential)

$$\phi_n(x) := \sum_{i=0}^{n-1} \phi(\sigma^i x) \text{ for } n \ge 1.$$

For $n \ge 1$, the *n*-variation of ϕ is given by $\operatorname{var}_n(\phi) = \sup\{|\phi(x) - \phi(y)| : x_0 = y_0, ..., x_{n-1} = y_{n-1}\}$ ϕ has summable variations when $\sum_{n>2} \operatorname{var}_n(\phi) < \infty$.

 $\operatorname{var}_n(\phi) \leq \operatorname{constant} \lambda^n, 0 < \lambda < 1$ (locally Hölder)

 $\operatorname{var}_1(\phi) = +\infty$ is allowed.

▲御▶ ▲周▶ ▲周▶ 三語

 $\phi: \Sigma_A \to \mathbb{R}$ be a measurable potential.

Ruelle operator: For measurable function f and $x \in \Sigma_A$,

$$L_{\phi}(f)(x) = \sum_{\substack{y \in \Sigma_A \\ \sigma(y) = x}} e^{\phi(y)} f(y).$$

Let μ sigma-finite measure, $\lambda > 0$. (eigenmeasures)

$$\int L_{\phi}f(x)d\mu(x)=\lambda\int f(x)d\mu(x), \hspace{1em}$$
 for each $f\in L^{1}(\mu)$

Notation: $L^*_{\phi}(\mu) = \lambda \mu$

Eigenmeasures from the Generalized Ruelle-Perron-Frobenius' Theorem are sigma-finite but can be infinite!

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ 二 国

- """"" We should consider infinite measures on statistical mechanics, people in ergodic theory already did this...""""
- by Charles Pfister at CIRM, Marseille, in 2013.
- Classical Reference: An Introduction to Infinite Ergodic Theory, 1997 By Jon Aaronson.

- A I I I A I I I I

Before the infinite case...

★撮♪ ★ 周♪ ★ 周♪

Before the infinite case...

Before the infinite case...

Take $z = 12345... \in \Sigma_A$ and $\nu = \delta_z$.

Before the infinite case...

Take $z = 12345... \in \Sigma_A$ and $\nu = \delta_z$.

 ν is a DLR measure... for which potential???

Reference: Thermodynamic Formalism for Transient Potential Functions, Ofer Shwartz, CMP, 2019.

Before the infinite case...

Take $z = 12345... \in \Sigma_A$ and $\nu = \delta_z$.

 ν is a DLR measure... for which potential???

ν is a DLR measure for ANY potential!!!!!!

Reference: Thermodynamic Formalism for Transient Potential Functions, Ofer Shwartz, CMP, 2019.

Definition

Let Σ_A be a Markov shift, ν be a measure on the Borel sigma algebra \mathcal{B} , and $\phi: \Sigma_A \to \mathbb{R}$ be a measurable potential. We say that ν is ϕ -DLR if, for every $n \ge 1$,

- i) the restriction of ν to the sub- σ -algebra $\sigma^{-n}\mathcal{B}$ is sigma-finite,
- ii) for every cylinder [a] of length n, we have

$$\mathbb{E}_{\nu}(\mathbf{1}_{[a]}|\sigma^{-n}\mathcal{B})(x) = \frac{e^{\phi_n(a\sigma^n x)}\mathbf{1}_{\{a\sigma^n x \in \Sigma_A\}}}{\sum_{\sigma^n y = \sigma^n x} e^{\phi_n(y)}}, \quad \nu\text{-a.e.}$$
(1)

Proposition

 $\phi: \Sigma_A \to \mathbb{R}$ be a measurable potential and ν such that $\|L_{\phi}\mathbf{1}\|_{\infty} < \infty$. If,

•
$$\nu([a]) < \infty$$
 for each $a \in \mathbb{N}$.

•
$$L^*_{\phi}(\nu) = \lambda \nu$$

Then, ν is ϕ -DLR.

Buzzi-Sarig (ETDS-2003):

Let Σ_A be a topologically mixing Markov shift, if $\phi : \Sigma_A \to \mathbb{R}$ is regular enough with $\sup \phi < \infty$ and $P_G(\phi) < \infty$. Then there exists at most one equilibrium measure *m* and, when does exist, $m = hd\mu$ where *h* and μ are the eigenfunction and eigenmeasure associated to $\lambda = e^{P_G(\phi)}$.

Buzzi-Sarig (ETDS-2003):

Let Σ_A be a topologically mixing Markov shift, if $\phi : \Sigma_A \to \mathbb{R}$ is regular enough with $\sup \phi < \infty$ and $P_G(\phi) < \infty$. Then there exists at most one equilibrium measure *m* and, when does exist, $m = hd\mu$ where *h* and μ are the eigenfunction and eigenmeasure associated to $\lambda = e^{P_G(\phi)}$.

Theorem (Sarig - CMP - 2001)

Let Σ_A be the renewal shift and let $\phi : \Sigma_A \to \mathbb{R}$ be a weakly Hölder continuous function such that $\sup \phi < \infty$. Then there exists $0 < \beta_c \le \infty$ such that:

(i) For $0 < \beta < \beta_c$, there exists $m_\beta = h_\beta \mu_\beta$ equilibrium measure for $\beta \phi$. (ii) For $\beta_c < \beta$, there is no m_β equilibrium measure for $\beta \phi$.

(ロ) (聞) (同) (同)

Theorem (RB, E.R. Beltrán, E.O. Endo, 2019+)

Let Σ_A be the renewal shift and let $\phi : \Sigma_A \to \mathbb{R}$ be a locally Hölder continuous such that $\sup \phi < \infty$. For $\beta > 0$, consider ν_β be the eigenmeasure associated to the potential $\beta\phi$. Let $\beta_c \in (0, +\infty]$ from Sarig's theorem. Then, there exists $\tilde{\beta}_c \in (0, \beta_c]$ such that:

(i) For $0 < \beta < \tilde{\beta}_c$, ν_{β} is finite.

(ii) For
$$\tilde{\beta}_{c} < \beta < \beta_{c}$$
, ν_{β} is infinite.

$$\tilde{\beta}_{c} = \sup\left\{\beta \in (0, \beta_{c}] : \limsup_{n \to \infty} \frac{1}{n} \sum_{j=2}^{n} \phi(\gamma_{j}) < \frac{P_{G}(\beta \phi)}{\beta}\right\}$$

where $\gamma_{j} = \overline{(j, j-1, j-2, ..., 1)}.$

Examples:

 β_c and $\tilde{\beta_c}$ can be different or equal:

i) $\phi(x) \equiv c \ (c \in \mathbb{R})$ constant potential, then $\beta_c = \tilde{\beta_c} = +\infty$.

ii) Let
$$\phi(x) = x_0 - x_1$$
 we have $\beta_c = +\infty$ and $\tilde{\beta_c} = \log 2$.

Remark: log 2 is the Gurevich's entropy of the Renewal.

▲御▶ ▲周▶ ▲周▶ 三日

Further Questions:

- i) Infinite DLR measures on $\Sigma_{\mathcal{A}} \subset \mathbb{N}^{\mathbb{Z}^d}$?
- ii) Infinite DLR measures on classical models ?

・ 同 ト ・ ヨ ト ・ ヨ ト …