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But why do we observe critical behavior outside a
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Model and predictions



Activated Random Walks
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Fixation: each site is eventually stable

Activity: each site is visited infinitely many times
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Rules out “energy vs. entropy” approaches
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Phase transition results
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slow

d = 1 directed d = 1 biased d = 1 unbiased

d = 2 unbiasedd ≥ 3 unbiasedd ≥ 2 biased

fast

scaling limit

ζ

λ

1

∞

ζ

λ

1

∞

ζ

λ

1

∞

ζ

λ

1

∞

ζ

λ

1

∞

ζ

λ

1

∞

Taggi. Ann Inst H Poincaré Probab Statist (2019+)
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Main tools

Site-wise representation and Abelianess

Diaconis, Fulton. Rend Semin Mat Torino (1991) | Eriksson. SIAM J Discrete Math (1996)

Relate it to the dynamics, preserving monotonicity, etc

Reduce fixation-activity question to toppling procedures

R, Sidoravicius. Invent Math (2012)
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Main tools (cont)

Assuming a particle-wise construction is well-defined:

a particle stays active ⇒ sites stay active

Amir, Gurel-Gurevich. Electron Commun Probab (2010)

Well-definedness of the particle-wise construction

→ ergodicity, mass transport, coupling, surgery

Averaged criterion for activity

R, Tournier. Ann Inst H Poincaré Probab Statist (2018)
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` Stabilizing a large box forces a large number of

particles to visit a specific site, wpp

R, Sidoravicius. Invent Math (2012)

` Stabilizing a large box forces a positive fraction of the

particles to leave the box, on average
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Theorem. Given d, λ, p, there exists ζc such that

ζζcfixation activity

for all ergodic initial states with density ζ

R, Sidoravicius, Zindy. Ann Henri Poincaré (2019)

– Can drop the previous “i.i.d. Poisson” assumption

– Restrictive proofs now yield general theorems

– Contributes to ongoing discussion about some

dissipative models mixing better than others
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Scaling limits and avalanches



Critical one-dimensional model

d = 1, directed walks (integrable case)

i.i.d. initial condition with critical density ζ = ζc =
λ

1+λ

Run the dynamics on Vn = [0, n] until it is stable.

Cn := how many particles cross the origin.

Released the active particles at x = n+ 1, let them

interact with the leftovers of previous step. Cn+1 ≥ Cn
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Simulation





Scaling limit

Theorem (Cabezas, R ’19).

The counting process (Cn)n>0 rescales to (Cρx)x>0

Pure-jump process constructed from a collection of

correlated reflected coalescing Brownian motions

Correlations depend on ρ = σs
σp
∈ (0, 1], where

σ2s = ζ − ζ2 and σ2p is the variance of initial condition
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ρ = 1.00, 0.50, 0.30, 0.10, 0.05, 0.00



Notes on some selected proofs



Toppling procedures

Abelian particle-wise construction

mV (x) := odometer at x when V is stabilized

lim
k

lim
V

P[mV (x) > k] =

0⇔ Fixation (B)

1⇔ Activity (U)

Mn := #Particles which quit when Bn is stabilized

lim sup
n

E[Mn]

|Bn|
> 0 ⇒ Activity (E)



Examples

Thm (Stauffer, Taggi). ζc > λ
1+λ

Thm (Taggi; R, Tournier). ζc 6 Fp(λ)



Particle-wise construction

Labeled particles → mass transport, ergodicity, surgery

Construction: assign to each particle a CTRW+beep

MTP Example. Assume particles fixate a.s.

ζ =E[start at o] = E[settle at o] 6 1

Thm. Site fixation ⇒ ζ < 1

Cabezas, R, Sidoravicius. Probab Theory Relat Fields (2018)



Particle-wise construction (cont)

Thm. The PWC is well-defined

Add particles one by one, updating the whole evolution

` Life of each particle is well-defined through some limit

Main step: ∀x, T , the number of particle additions that

affect site x by time T has finite expectation

R, Tournier. Ann Inst H Poincaré Probab Statist (2018)
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Proofs of fixation/activity that give different insights

Unbiased walks on Z2: ζc < 1 for some λ <∞

Dichotomy for the slow-fast transition on finite ring

Make sense of scaling limit at criticality for d > 2

Sharpness when a fraction of particles start active

Many more...
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